Skip to main content
Log in

Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by interacting with the 3′ untranslated regions of their target mRNAs. Previously, miRNAs have been shown to regulate genes involved in cell growth, apoptosis, and differentiation, but their role in ovarian granulosa cell follicle-stimulating hormone (FSH)-stimulated steroidogenesis is unclear. Here we show that expression of 31 miRNAs is altered during FSH-mediated progesterone secretion of cultured granulosa cells. Specifically, 12 h after FSH treatment, miRNAs mir-29a and mir-30d were significantly down-regulated. However, their expression increased after 48 h. Bioinformatic analysis used to predict potential targets of mir-29a and mir-30d revealed a wide array of potential mRNA target genes, including those encoding genes involved in multiple signaling pathways. Taken together, our results pointed to a novel mechanism for the pleiotropic effects of FSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.R. Kumar, Y. Wang, N. Lu, M.M. Matzuk, Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15, 201–204 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. A. Amsterdam, N. Selvaraj, Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. Endocr. Rev. 18, 435–461 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. A. Amsterdam, S. Rotmensch, A. Ben-Ze’ev, Coordinated regulation of morphological and biochemical differentiation in a steroidogenic cell: the granulosa cell model. Trends Biochem. Sci. 14, 377–382 (1989)

    Article  CAS  PubMed  Google Scholar 

  4. A. Amsterdam, R.S. Gold, K. Hosokawa, Y. Yoshida, R. Sasson, Y. Jung, F. Kotsuji, Crosstalk among multiple signaling pathways controlling ovarian cell death. Trends Endocrinol. Metab. 10, 255–262 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. R.L. Robker, D.L. Russell, S. Yoshioka, S.C. Sharma, J.P. Lydon, B.W. O’Malley, L.L. Espey, J.S. Richards, Ovulation: a multi-gene, multi-step process. Steroids 65, 559–570 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. N.A. Grieshaber, C. Ko, S.S. Grieshaber, I. Ji, T.H. Ji, Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells: class I beta-tubulin, tropomyosin-4, and kinesin heavy chain. Endocrinology 144, 29–39 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. R. Sasson, A. Dantes, K. Tajima, A. Amsterdam, Novel genes modulated by FSH in normal and immortalized FSH-responsive cells: new insights into the mechanism of FSH action. FASEB J. 17, 1256–1266 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. M. Tanaka, J.D. Hennebold, K. Miyakoshi, T. Teranishi, K. Ueno, E.Y. Adashi, The generation and characterization of an ovary-selective cDNA library. Mol. Cell. Endocrinol. 202, 67–69 (2003)

    CAS  PubMed  Google Scholar 

  9. S. Shimasaki, R.J. Zachow, D. Li, H. Kim, S. Iemura, N. Ueno, K. Sampath, R.J. Chang, G.F. Erickson, A functional bone morphogenetic protein system in the ovary. Proc. Natl. Acad. Sci. USA 96, 7282–7287 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. N. Yao, C.L. Lu, J.J. Zhao, H.F. Xia, D.G. Sun, X.Q. Shi, C. Wang, D. Li, Y. Cui, X. Ma, A network of miRNAs expressed in the ovary are regulated by FSH. Front Biosci. 14, 3239–3245 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. M. Lagos-Quintana, R. Rauhut, W. Lendeckel, T. Tuschl, Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. A.M. Cheng, M.W. Byrom, J. Shelton, L.P. Ford, Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. S. Vasudevan, Y. Tong, J.A. Steitz, Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. A. Cohen, M. Shmoish, L. Levi, U. Cheruti, B. Levavi-Sivan, E. Lubzens, Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation. Endocrinology 149, 1687–1696 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. S.D. Fiedler, M.Z. Carletti, X. Hong, L.K. Christenson, Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biol. Reprod. 79, 1030–1037 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. T. Yuen, F. Ruf, T. Chu, S.C. Sealfon, Microtranscriptome regulation by gonadotropin-releasing hormone. Mol. Cell. Endocrinol. 302, 12–17 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. G. Stefani, F.J. Slack, Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell. Biol. 9, 219–230 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. M. Otsuka, M. Zheng, M. Hayashi, J.D. Lee, O. Yoshino, S. Lin, J. Han, Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J. Clin. Invest. 118, 1944–1954 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. S. Ro, R. Song, C. Park, H. Zheng, K.M. Sanders, W. Yan, Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA 13, 2366–2380 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. N.J. Martinez, M.C. Ow, M.I. Barrasa, M. Hammell, R. Sequerra, L. Doucette-Stamm, F.P. Roth, V.R. Ambros, A.J. Walhout, A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev. 22, 2535–2549 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. S.M. Johnson, S.Y. Lin, F.J. Slack, The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259, 364–379 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. K.A. O’Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, J.T. Mendell, c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005)

    Article  PubMed  Google Scholar 

  23. Y. Sylvestre, V. De Guire, E. Querido, U.K. Mukhopadhyay, V. Bourdeau, F. Major, G. Ferbeyre, P. Chartrand, An E2F/miR-20a autoregulatory feedback loop. J Biol. Chem. 282, 2135–2143 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. M. Yamakuchi, C.J. Lowenstein, MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8, 712–715 (2009)

    CAS  PubMed  Google Scholar 

  25. B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. P.K. Rao, R.M. Kumar, M. Farkhondeh, S. Baskerville, H.F. Lodish, Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA 103, 8721–8726 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. S. Marton, M.R. Garcia, C. Robello, H. Persson, F. Trajtenberg, O. Pritsch, C. Rovira, H. Naya, G. Dighiero, A. Cayota, Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22, 330–338 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. C.A. Gebeshuber, K. Zatloukal, J. Martinez, miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 10, 400–405 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. J. Wang, R. Xu, F. Lin, S. Zhang, G. Zhang, S. Hu, Z. Zheng, MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 113, 81–88 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. A. He, L. Zhu, N. Gupta, Y. Chang, F. Fang, Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3–L1 adipocytes. Mol. Endocrinol. 21, 2785–2794 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. X. Tang, L. Muniappan, G. Tang, S. Ozcan, Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15, 287–293 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. A.E. Williams, S.A. Moschos, M.M. Perry, P.J. Barnes, M.A. Lindsay, Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev. Dyn. 236, 572–580 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. M. Hunzicker-Dunn, E.T. Maizels, FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell. Signal. 18, 1351–1359 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. C.K. Sites, B. Kessel, A.R. LaBarbera, Adhesion proteins increase cellular attachment, follicle-stimulating hormone receptors, and progesterone production in cultured porcine granulosa cells. Proc. Soc. Exp. Biol. Med. 212, 78–83 (1996)

    CAS  PubMed  Google Scholar 

  35. K. Nakano, I. Naito, R. Momota, Y. Sado, H. Hasegawa, Y. Ninomiya, A. Ohtsuka, The distribution of type IV collagen alpha chains in the mouse ovary and its correlation with follicular development. Arch. Histol. Cytol. 70, 243–253 (2007)

    Article  PubMed  Google Scholar 

  36. N.B. Gilula, M.L. Epstein, W.H. Beers, Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J. Cell Biol. 78, 58–75 (1978)

    Article  CAS  PubMed  Google Scholar 

  37. C. Kohler, C.B. Villar, Programming of gene expression by Polycomb group proteins. Trends Cell Biol. 18, 236–243 (2008)

    Article  PubMed  Google Scholar 

  38. L.A. Boyer, K. Plath, J. Zeitlinger, T. Brambrink, L.A. Medeiros, T.I. Lee, S.S. Levine, M. Wernig, A. Tajonar, M.K. Ray, G.W. Bell, A.P. Otte, M. Vidal, D.K. Gifford, R.A. Young, R. Jaenisch, Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. P.F. Terranova, F. Garza, Relationship between the preovulatory luteinizing hormone (LH) surge and androstenedione synthesis of preantral follicles in the cyclic hamster: detection by in vitro responses to LH. Biol. Reprod. 29, 630–636 (1983)

    Article  CAS  PubMed  Google Scholar 

  40. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29 (2000)

    Article  CAS  PubMed  Google Scholar 

  41. M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, M. Hirakawa, From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34, D354–D357 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (973) (No. 2010CB529504), Important National Science & Technology Specific Projects (No. 2009ZX09308-006), National Nonprofit Institute Research Grant of NRIFP, and the Denaturing High-performance Liquid chromatography System Update and its Application in Chinese Genetic Resource (No. 2006JG006100). Core facilities used in this research were provided by the Department of Genetics, National Research Institute for Family Planning. The authors would like to thank Prof. Yixun Liu and Prof. Jian Xu for help in primary granulosa cell culture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cai-Ling Lu or Xu Ma.

Additional information

Bai-Qing Yang has contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 478 kb)

Supplementary material 2 (DOC 631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, N., Yang, BQ., Liu, Y. et al. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocr 38, 158–166 (2010). https://doi.org/10.1007/s12020-010-9345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9345-1

Keywords

Navigation