Skip to main content
Log in

Hexagonal cerium oxide decorated on β-Ni(OH)2 nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Cerium oxide decorated on nickel hydroxide anchored on reduced graphene oxide (Ce-Ni(OH)2/rGO) composite with hexagonal structures were synthesized by facile hydrothermal method. Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy with selected area diffraction (HRTEM-SAED), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area analysis and electrochemical technology were used to characterize the composite. Due to its unique two-dimensional structures and synergistic effect among Ce2O3, Ni(OH)2 and rGO components indicated two-dimensional hexagonal nano Ce-Ni(OH)2/rGO composite is promising electrode material for improved electrochemical H2O2 sensing application. From 50 to 800 µM, the H2O2 concentration was linearly proportional to the oxidation current, with a lower detection of limit of 10.5 µM (S/N = 3). The sensor has a higher sensitivity of 0.625 μA μM−1 cm−2. In addition, the sensor demonstrated high selectivity, repeatability and stability. These findings proved the viability of the synthetic method and the potential of the composites as a H2O2 sensing option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lee J-H, Hong H-G (2015) Nonenzymatic electrochemical sensing of hydrogen peroxide based on a polyaniline-MnO2 nanofiber-modified glassy carbon electrode. J Appl Electrochem 45(10):1153–1162. https://doi.org/10.1007/s10800-015-0881-5

    Article  CAS  Google Scholar 

  2. Hu J, Zhang C, Li X, Du X (2020) An electrochemical sensor based on chalcogenide molybdenum disulfide-gold-silver nanocomposite for detection of hydrogen peroxide released by cancer cells. Sensors 20(23):6817

    Article  CAS  Google Scholar 

  3. Song M-J, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80(5):1648–1652. https://doi.org/10.1016/j.talanta.2009.09.061

    Article  CAS  Google Scholar 

  4. Zhang C, Li L, Ju J, Chen W (2016) Electrochemical sensor based on graphene-supported tin oxide nanoclusters for nonenzymatic detection of hydrogen peroxide. Electrochim Acta 210:181–189. https://doi.org/10.1016/j.electacta.2016.05.151

    Article  CAS  Google Scholar 

  5. Lopa NS, Rahman MM, Ahmed F, Chandra Sutradhar S, Ryu T, Kim W (2018) A base-stable metal-organic framework for sensitive and non-enzymatic electrochemical detection of hydrogen peroxide. Electrochim Acta 274:49–56. https://doi.org/10.1016/j.electacta.2018.03.148

    Article  CAS  Google Scholar 

  6. Kogularasu S, Govindasamy M, Chen S-M, Akilarasan M, Mani V (2017) 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sens Actuators B Chem 253:773–783. https://doi.org/10.1016/j.snb.2017.06.172

    Article  CAS  Google Scholar 

  7. Yan Q, Wang Z, Zhang J, Peng H, Chen X, Hou H et al (2012) Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim Acta 61:148–153. https://doi.org/10.1016/j.electacta.2011.11.098

    Article  CAS  Google Scholar 

  8. Martínez-Sánchez C, Regmi C, Lee SW, Rodríguez-González V (2021) Effects of Ce doping on the photocatalytic and electrochemical performance of nickel hydroxide nanostructures. Top Catal 64(1):73–83. https://doi.org/10.1007/s11244-020-01295-y

    Article  CAS  Google Scholar 

  9. Wang D, Pang L, Mou H, Zhou Y, Song C (2015) Facile synthesis of CeO2 decorated Ni(OH)2 hierarchical composites for enhanced electrocatalytic sensing of H2O2. RSC Adv 5(31):24101–24109. https://doi.org/10.1039/C4RA17119E

    Article  CAS  Google Scholar 

  10. Neiva EGC, Oliveira MM, Bergamini MF, Marcolino LH, Zarbin AJG (2016) One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Sci Rep 6(1):33806. https://doi.org/10.1038/srep33806

    Article  CAS  Google Scholar 

  11. Li H, Wang S, Ye J, Liang W, Zhang Y, Gu J (2019) One-pot synthesize Al-doped α-Ni(OH)2/reduced graphene oxide composite for high-performance asymmetric supercapacitors. J Alloy Compd 799:529–537. https://doi.org/10.1016/j.jallcom.2019.05.308

    Article  CAS  Google Scholar 

  12. He W, Li X, An S, Li T, Zhang Y, Cui J (2019) 3D β-Ni(OH)2 nanowires/RGO composite prepared by phase transformation method for superior electrochemical performance. Sci Rep 9(1):10838. https://doi.org/10.1038/s41598-019-47120-9

    Article  CAS  Google Scholar 

  13. Fang G, Cai J, Huang Z, Zhang C (2019) One-step electrodeposition of cerium-doped nickel hydroxide nanosheets for effective oxygen generation. RSC Adv 9(31):17891–17896. https://doi.org/10.1039/C9RA02682G

    Article  CAS  Google Scholar 

  14. Regmi C, Maya-Flores E, Lee SW, Rodríguez-González V (2018) Cerium-doped β-Ni(OH)2 hexagon nanosheets: an effective photocatalyst for the degradation of the emerging water pollutant, naproxen. Nanotechnology 29(37):375603. https://doi.org/10.1088/1361-6528/aace14

    Article  CAS  Google Scholar 

  15. Babar PT, Pawar BS, Ahmed ATA, Sekar S, Lee S, Sankapal BR et al (2020) Synthesis of nickel hydroxide/reduced graphene oxide composite thin films for water splitting application. Int J Energy Res 44(13):10908–10916. https://doi.org/10.1002/er.5627

    Article  CAS  Google Scholar 

  16. Zhang Y, Lei W, Wu Q, Xia X, Hao Q (2017) Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide. Microchim Acta 184(9):3103–3111. https://doi.org/10.1007/s00604-017-2332-y

    Article  CAS  Google Scholar 

  17. Ma H, He J, Xiong D-B, Wu J, Li Q, Dravid V et al (2016) Nickel Cobalt hydroxide @reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability. ACS Appl Mater Interfaces 8(3):1992–2000. https://doi.org/10.1021/acsami.5b10280

    Article  CAS  Google Scholar 

  18. Venkateswara PM, Raju CV, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendran S, Alwarappan S et al (2016) Cerium doped nickel-oxide nanostructures for riboflavin biosensing and antibacterial applications. New J Chem 40(3):2741–2748. https://doi.org/10.1039/C5NJ03539B

    Article  CAS  Google Scholar 

  19. Singh R, Kumar M, Khajuria H, Tashi L, Sheikh HN (2019) Nitrogen-doped graphene-cerium oxide (NG-CeO2) photocatalyst for the photodegradation of methylene blue in waste water. J Chin Chem Soc 66(5):467–473. https://doi.org/10.1002/jccs.201800317

    Article  CAS  Google Scholar 

  20. Mei X, Meng X, Wu F (2015) Hydrothermal method for the production of reduced graphene oxide. Phys E 68:81–86. https://doi.org/10.1016/j.physe.2014.12.011

    Article  CAS  Google Scholar 

  21. Yao J, Gong Y, Yang S, Xiao P, Zhang Y, Keyshar K et al (2014) CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. ACS Appl Mater Interfaces 6(22):20414–20422. https://doi.org/10.1021/am505983m

    Article  CAS  Google Scholar 

  22. Chen Y, Song B, Tang X, Lu L, Xue J (2012) One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. J Mater Chem 22(34):17656–17662. https://doi.org/10.1039/C2JM32057F

    Article  CAS  Google Scholar 

  23. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225. https://doi.org/10.1016/j.bios.2014.02.061

    Article  CAS  Google Scholar 

  24. Hall DS, Lockwood DJ, Poirier S, Bock C, MacDougall BR (2012) Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J Phys Chem A 116(25):6771–6784. https://doi.org/10.1021/jp303546r

    Article  CAS  Google Scholar 

  25. Hsieh C-T, Hsu S-M, Lin J-Y, Teng H (2011) Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes. J Phys Chem C 115(25):12367–12374. https://doi.org/10.1021/jp2032687

    Article  CAS  Google Scholar 

  26. Chakrabarty N, Dey A, Krishnamurthy S, Chakraborty AK (2021) CeO2/Ce2O3 quantum dot decorated reduced graphene oxide nanohybrid as electrode for supercapacitor. Appl Surf Sci 536:147960. https://doi.org/10.1016/j.apsusc.2020.147960

    Article  CAS  Google Scholar 

  27. Xie J, Liu W, Zhang X, Guo Y, Gao L, Lei F et al (2019) Constructing hierarchical wire-on-sheet nanoarrays in phase-regulated cerium-doped nickel hydroxide for promoted urea electro-oxidation. ACS Mater Lett 1(1):103–110. https://doi.org/10.1021/acsmaterialslett.9b00124

    Article  CAS  Google Scholar 

  28. Saranya PE, Selladurai S (2019) Mesoporous 3D network Ce-doped NiO nanoflakes as high performance electrodes for supercapacitor applications. New J Chem 43(19):7441–7456. https://doi.org/10.1039/C9NJ00097F

    Article  CAS  Google Scholar 

  29. Meher SK, Justin P, Rao GR (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073. https://doi.org/10.1021/am200294k

    Article  CAS  Google Scholar 

  30. Xue Y, Maduraiveeran G, Wang M, Zheng S, Zhang Y, Jin W (2018) Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta 176:397–405. https://doi.org/10.1016/j.talanta.2017.08.060

    Article  CAS  Google Scholar 

  31. Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G (2020) Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Microchim Acta 187(2):105. https://doi.org/10.1007/s00604-019-4064-7

    Article  CAS  Google Scholar 

  32. Gangadharappa MS, Raghu MS, Kumar S, Parashuram L, Kumar VU (2021) Elaeocarpus ganitrus structured mesoporous hybrid Mn3+/4+ loaded zirconia self assembly as a versatile amperometric probe for the electrochemical detection of nitrite. ChemistrySelect 6(4):880–887. https://doi.org/10.1002/slct.202004543

    Article  CAS  Google Scholar 

  33. García-Miranda Ferrari A, Foster CW, Kelly PJ, Brownson DAC, Banks CE (2018) Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8(2):53

    Article  Google Scholar 

  34. Dong Y, Duan C, Sheng Q, Zheng J (2019) Preparation of Ag@zeolitic imidazolate framework-67 at room temperature for electrochemical sensing of hydrogen peroxide. Analyst 144(2):521–529. https://doi.org/10.1039/C8AN01641K

    Article  CAS  Google Scholar 

  35. Chang Y, Qiao J, Liu Q, Shangguan L, Ma X, Shuang S et al (2008) Electrochemical behavior of hydrogen peroxide at a glassy carbon electrode modified with nickel hydroxide–decorated multiwalled carbon nanotubes. Anal Lett 41(17):3147–3160. https://doi.org/10.1080/00032710802462982

    Article  CAS  Google Scholar 

  36. Zhu G, Liu Y, Xi C, Bao C, Xu H, Shen X et al (2013) Polymer guided synthesis of Ni(OH)2 with hierarchical structure and their application as the precursor for sensing materials. CrystEngComm 15(44):9189–9195. https://doi.org/10.1039/C3CE41614C

    Article  CAS  Google Scholar 

  37. Kiani MA, Mousavi MF, Ghasemi S (2010) Size effect investigation on battery performance: comparison between micro- and nano-particles of β-Ni(OH)2 as nickel battery cathode material. J Power Sourc 195(17):5794–5800. https://doi.org/10.1016/j.jpowsour.2010.03.080

    Article  CAS  Google Scholar 

  38. Zhou H-B, Zhou Z-T (2006) Effects of ultrasonic treatment on the structure and electrochemical performances of spherical β-Ni(OH)2. Chin J Chem 24(1):37–44. https://doi.org/10.1002/cjoc.200690019

    Article  CAS  Google Scholar 

  39. Gao P, Gong Y, Mellott NP, Liu D (2015) Non-enzymatic amperometric detection of hydrogen peroxide using grass-like copper oxide nanostructures calcined in nitrogen atmosphere. Electrochim Acta 173:31–39. https://doi.org/10.1016/j.electacta.2015.05.037

    Article  CAS  Google Scholar 

  40. Barman K, Jasimuddin S (2016) Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(iv) complex modified gold electrode. RSC Adv 6(25):20800–20806. https://doi.org/10.1039/C5RA26534G

    Article  CAS  Google Scholar 

  41. Ramachandran R, Zhao C, Rajkumar M, Rajavel K, Zhu P, Xuan W et al (2019) Porous nickel oxide microsphere and Ti3C2Tx hybrid derived from metal-organic framework for battery-type supercapacitor electrode and non-enzymatic H2O2 sensor. Electrochim Acta 322:134771. https://doi.org/10.1016/j.electacta.2019.134771

    Article  CAS  Google Scholar 

  42. Noorbakhsh A, Salimi A (2009) Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes. Electrochim Acta 54:6312–6321. https://doi.org/10.1016/j.electacta.2009.05.078

    Article  CAS  Google Scholar 

  43. Yang S, Li G, Wang G, Liu L, Wang D, Qu L (2016) Synthesis of highly dispersed CeO2 nanoparticles on N-doped reduced oxide graphene and their electrocatalytic activity toward H2O2. J Alloy Compd 688:910–916. https://doi.org/10.1016/j.jallcom.2016.07.113

    Article  CAS  Google Scholar 

  44. Kumar S, Tsai C-H, Fu Y-P (2020) A multifunctional Ni-doped iron pyrite/reduced graphene oxide composite as an efficient counter electrode for DSSCs and as a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Trans 49(25):8516–8527. https://doi.org/10.1039/D0DT01231A

    Article  CAS  Google Scholar 

  45. Jana S, Samai S, Mitra BC, Bera P, Mondal A (2014) Nickel oxide thin film from electrodeposited nickel sulfide thin film: peroxide sensing and photo-decomposition of phenol. Dalton Trans 43(34):13096–13104. https://doi.org/10.1039/C4DT01658K

    Article  CAS  Google Scholar 

  46. Šljukić B, Banks CE, Crossley A, Compton RG (2006) Iron(III) oxide graphite composite electrodes: application to the electroanalytical detection of hydrazine and hydrogen peroxide. Electroanalysis 18(18):1757–1762. https://doi.org/10.1002/elan.200603605

    Article  CAS  Google Scholar 

  47. Langley CE, Scaron LB, Banks CE, Compton RG (2007) Manganese dioxide graphite composite electrodes: application to the electroanalysis of hydrogen peroxide ascorbic acid and nitrite. Anal Sci 23(2):165–170. https://doi.org/10.2116/analsci.23.165

    Article  Google Scholar 

  48. Baccarin M, Janegitz BC, Berté R, Vicentini FC, Banks CE, Fatibello-Filho O et al (2016) Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Mater Sci Eng C 58:97–102. https://doi.org/10.1016/j.msec.2015.08.013

    Article  CAS  Google Scholar 

  49. Blanco E, Vázquez L, del Pozo M, Roy R, Petit-Domínguez MD, Quintana C et al (2020) Evaluation of oxidative stress: nanoparticle-based electrochemical sensors for hydrogen peroxide determination in human semen samples. Bioelectrochemistry 135:107581. https://doi.org/10.1016/j.bioelechem.2020.107581

    Article  CAS  Google Scholar 

  50. Lu Z, Wu L, Dai X, Wang Y, Sun M, Zhou C et al (2021) Novel flexible bifunctional amperometric biosensor based on laser engraved porous graphene array electrodes: highly sensitive electrochemical determination of hydrogen peroxide and glucose. J Hazard Mater 402:123774. https://doi.org/10.1016/j.jhazmat.2020.123774

    Article  CAS  Google Scholar 

  51. He S, Zhang B, Liu M, Chen W (2014) Non-enzymatic hydrogen peroxide electrochemical sensor based on a three-dimensional MnO2 nanosheets/carbon foam composite. RSC Adv 4(90):49315–49323. https://doi.org/10.1039/C4RA09007A

    Article  CAS  Google Scholar 

  52. Ma J, Chen G, Bai W, Zheng J (2020) Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal-organic framework nanofilm and G-quadruplex-hemin DNAzyme. ACS Appl Mater Interfaces 12(52):58105–58112. https://doi.org/10.1021/acsami.0c09254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Siddaganga Institute of Technology in Tumkur for their generous assistance. The Department of Science and Technology funded this research via the Women Scientist Scheme-A (WOS-A) Ref. No. SR/WOS-A/CS-153/2018. The authors also thank Siddaganga Institute of Technology in Tumkur, Karnataka, for providing characterization facilities. Dr. Abdulraheem SA Almalki acknowledges Taif university Researchers Supporting Project number (TURSP-2020/44), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velu Udayakumar.

Ethics declarations

Conflicts of interest

There are no potential conflicts to mention.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjushree, S.G., Adarakatti, P.S., Udayakumar, V. et al. Hexagonal cerium oxide decorated on β-Ni(OH)2 nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2. Carbon Lett. 32, 591–604 (2022). https://doi.org/10.1007/s42823-021-00296-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00296-5

Keywords

Navigation