Skip to main content
Log in

Nanostructured Ce/CeO2-rGO: Highly Sensitive and Selective Electrochemical Hydrogen Sulfide (H2S) Sensor

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Herein, cerium/cerium oxide nanoparticles have been decorated on reduced graphene oxide (Ce/CeO2-rGO) for room temperature electrochemical determination of H2S in 0.5 M KOH. There is a superior linear correlation between the peak current density and H2S content in the tested range of 1–5 ppm. Moreover, comparison to other abundant gases such as CO2 shows no response at the potential of H2S oxidation, confirming no interference with H2S detection. It also reveals that the Ce/CeO2-rGO nanocomposite is a highly selective and sensitive system for the determination of H2S gas. Ce/CeO2-rGO synthesized by a simple chemical approach and further characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission-scanning electron microscopy (FE-SEM), coupled energy dispersive analysis of X-ray (EDAX), and BET-surface area measurement confirms the porosity of synthesized nanomaterials and homogeneous decoration of Ce/CeO2 nanoparticles on rGO sheets. The electrochemical studies, i.e., linear sweep voltammetry (LSV), of Ce/CeO2-rGO demonstrate the electrochemical H2S sensing at room temperature and for lower gas concentration (1 ppm) detection. The sensing mechanism is believed to be based on the modulation of the current and applied potential path across the electron exchange between the cerium oxide and rGO sites when exposed to H2S.

Graphical Abstract

One-pot synthesis of Ce/CeO2-GO hybrid nanostructure is of immense significance for H2S gas sensors. Here is a new superficial synthetic way intended for the synthesis of Ce/CeO2-GO nanocomposites through the sol–gel technique. Herein, we depict that the consequential Ce/CeO2 NPs decorated on graphene oxide sheet material can give competent electrocatalysts for the H2S oxidation reaction in an alkaline condition. The current density of 5.9 mA/cm2 on the tiny potential of 2.5 mV vs. SCE demonstrates huge catalytic bustle and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 3

Similar content being viewed by others

Availability of Data and Materials

No, all of the materials are owned by the authors and/or no permissions are required.

References

  1. E.A.Q. Mooyaart, E.L.G. Gelderman, M.W. Nijsten, R. Vos, J.M. Hirner, D.W. Lange, H.D.G. Leuvenink, W.M. Bergh, Outcome after hydrogen sulphide intoxication. Resuscitation. 103, 1–6 (2016). https://doi.org/10.1016/j.resuscitation.2016.03.012

    Article  PubMed  Google Scholar 

  2. J.R. Hall, M.H. Schoenfisch, Direct electrochemical sensing of hydrogen sulfide without sulfur poisoning. Anal. Chem. 90, 5194–5200 (2018). https://doi.org/10.1021/acs.analchem.7b05421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Jiang, A. Chan, S. Ali, A. Saha, K.J. Haushalter, W.L.M. Lam, M. Glasheen, J. Parker, M. Brenner, S.B. Mahon, H.H. Patel, R. Ambasudhan, S.A. Lipton, R.B. Pilz, G.R. Bos, Hydrogen sulfide-mechanisms of toxicity and development of an antidote. Sci. Rep. 6, 20831 (2016). https://doi.org/10.1038/srep20831

  4. S.L.M. Rubright, L.L. Pearce, J. Peterson, Environmental toxicology of hydrogen sulphide. Nitric Oxide. 71, 1–13 (2017). https://doi.org/10.1016/j.niox.2017.09.011

    Article  CAS  Google Scholar 

  5. J. Sun, L. Li, G. Zhou, X. Wang, L. Zhang, Y. Liu, J. Yang, X. Lu, F. Jiang, Biological sulfur reduction to generate H2S as a reducing agent to achieve simultaneous catalytic removal of SO2 and NO and sulfur recovery from flue gas. Environ. Sci. Technol. 52, 4754–4762 (2018). https://doi.org/10.1021/acs.est.7b06551

    Article  CAS  PubMed  Google Scholar 

  6. W. Rumbeiha, E. Whitley, P. Anantharam, D.S. Kim, A. Kanthasamy, Acute hydrogen sulphide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann. N.Y. Acad. Sci. 1378, 5-16 (2016). https://doi.org/10.1111/nyas.13148

  7. B. Jelen, D. Giovannelli, P.G. Falkowski, C. Vetriani, Elemental sulfur reduction in the deep-sea vent thermophile. Environ. Microbiol. 20, 2301–2316 (2018). https://doi.org/10.1111/1462-2920.14280

    Article  CAS  PubMed  Google Scholar 

  8. H. brahima, A. Serag, M.A. Farag, Emerging analytical tools for the detection of the third gasotransmitter H2S a comprehensive review. J. Adv. Res. 27, 137-153 (2021). https://doi.org/10.1016/j.jare.2020.05.018

  9. J. Furne, A. Saeed, M.D. Levitt, Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am. J. Physiol.: Regul, Integr. Comp. Physiol. 295, RR1479-R1485 (2008). https://doi.org/10.1152/ajpregu.90566.2008

  10. M.D. Levitt, M.S. Abdel-Rehim, J. Furne, Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signaling. 15, 373–378 (2011). https://doi.org/10.1089/ars.2010.3525

    Article  CAS  Google Scholar 

  11. X. Shen, C.B. Pattillo, S. Pardue, S.C. Bir, R. Wang, C.G. Kevil, Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radicals Biol. Med. 50, 1021–1031 (2011). https://doi.org/10.1016/j.freeradbiomed.2011.01.025

    Article  CAS  Google Scholar 

  12. E.A. Wintner, T.L. Deckwerth, W. Langston, A. Bengtsson, D. Leviten, P. Hill, M.A. Insko, R. Dumpit, E. VandenEkart, C.F. Toombs, C. Szabo, A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br. J. Pharmacol. 160, 941–957 (2010). https://doi.org/10.1111/j.1476-5381.2010.00704.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Nishida, T. Sawa, N. Kitajima, K. Ono, H. Inoue, H. Ihara, H. Motohashi, M. Yamamoto, M. Suematsu, H. Kurose, A. van der Vliet, B.A. Freeman, T. Shibata, K. Uchida, Y. Kumagai, T. Akaike, Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 8, 714–724 (2012). https://doi.org/10.1038/nchembio.1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X. Shen, G. K. Kolluru, S. Yuan and C. G. Kevil, Measurement of H2S In Vivo and In Vitro by the Monobromobimane Method. Methods Enzymol, ed. C. Enrique, P. Lester, Roary. Academic Press. 554, 31–45 (2015). https://doi.org/10.1016/bs.mie.2014.11.039

  15. X. Hu, B. Mutus, Electrochemical detection of sulphide. Rev. Anal. Chem. 32, 247–256 (2013). https://doi.org/10.1515/revac-2013-0008

    Article  CAS  Google Scholar 

  16. D.W. Kraus, J.E. Doeller, X. Zhang, J. Wang, X. Zhang, J. Huangxian, Electrochemical hydrogen sulfide biosensors. Academic Press, San Diego. 213-229 (2008). https://doi.org/10.1039/C5AN02208H

  17. S.K. Pandey, K.H. Kim, K.T. Tang, A review of sensor-based methods for monitoring hydrogen sulphide. TrAC Trends Anal. Chem. 32, 87–99 (2012). https://doi.org/10.1016/j.trac.2011.08.008

    Article  CAS  Google Scholar 

  18. N.S. Lawrence, J. Davis, R.G. Compton, Analytical strategies for the detection of sulfide: a review. Talanta. 52, 771–784 (2000). https://doi.org/10.1016/S0039-9140(00)00421-5

    Article  CAS  PubMed  Google Scholar 

  19. A. Afkhami, L. Khalafi, Indirect determination of sulfide by cold vapor atomic absorption spectrometry. Microchim. Acta. 150, 43–46 (2005). https://doi.org/10.1007/s00604-005-0344-5

    Article  CAS  Google Scholar 

  20. S. Shah, Md.A. Aziz, M. Oyama, A.R.F. Albatar, Controlled-potential-based electrochemical sulfide sensors: a review. Chem. Rec. 21, 204–238 (2021). https://doi.org/10.1002/tcr.202000115

    Article  CAS  PubMed  Google Scholar 

  21. H. Peng, Strategies in developing fluorescent probes for live cell imaging and quantitation of hydrogen sulfide. JSM Biotechnol Biomed Eng. 1, 1018, 1-3 (2013). https://doi.org/10.47739/2333-7117/1018

  22. Z. Pawlak, A. S. Pawlak, Modification of iodometric determination of total and reactive sulfide in environmental sample. Talanta 48(2):347-353 (1999)

  23. A. Aziz, S.S. Shah, A. Kashem, Preparation and utilization of jute-derived carbon: a short review. Chem. Rec. 20, 1074–1098 (2020). https://doi.org/10.1002/tcr.202000071

    Article  CAS  PubMed  Google Scholar 

  24. A.J.S. Ahammad, N. Odhikari, S.S. Shah, M.M. Hasan, T. Islam, P.R. Pal, M.A. Ahmed Qasem, M.A. Aziz, Porous tal palm carbon nanosheets: preparation, characterization and application for the simultaneous determination of dopamine and uric acid. Nanoscale Adv.1, 613-626 (2019). https://doi.org/10.1039/C8NA00090E

  25. B.B. Mulik, A.V. Munde, R.P. Dighole, B.R. Sathe, Electrochemical determination of semicarbazide on cobalt oxide nanoparticles: implication towards environmental monitoring. J Ind Eng Chem. 93, 259–266 (2021). https://doi.org/10.1016/j.jiec.2020.10.002

    Article  CAS  Google Scholar 

  26. S.M. Mali, S.S. Narwade, Y.H. Navale, S.B. Tayade, R.V. Digraskar, V.B. Patil, A.S. Kumbhar, B.R. Sathe, Heterostructural CuO–ZnO nanocomposites: a highly selective chemical and electrochemical NO2 sensor. ACS Omega. 4, 20129–20141 (2019). https://doi.org/10.1021/acsomega.9b01382

  27. S.S. Shah, M.A. Alfasane, I.A. Bakare, M.A. Aziz, Z.H. Yamani, Polyaniline and heteroatoms–enriched carbon derived from Pithophora polymorpha composite for high performance supercapacitor. J. Energy Storage. 30, 101562 (2020). https://doi.org/10.1016/j.est.2020.101562

  28. H. Shang, H. Xu, L. Jin, C. Wang, C. Chen, T. Song, Y. Du, 3D ZnIn2S4 nanosheets decorated ZnCdS dodecahedral cages as multifunctional signal amplification matrix combined with electroactive/photoactive materials for dual mode electrochemical - photoelectrochemical detection of bovine haemoglobin. Biosens. Bioelectron. 159, 112202 (2020). https://doi.org/10.1016/j.bios.2020.112202

  29. Y. Zhao, Y. Yang, L. Cui, F. Zheng, Q. Song, Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosens. Bioelectron. 117, 53–59 (2018). https://doi.org/10.1016/j.bios.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  30. M. Asif, A. Aziz, Z. Wang, G. Ashraf, J. Wang, H. Luo, X. Chen, F. Xiao, H. Liu, Hierarchical CNTs@CuMn layered double hydroxide nanohybrid with enhanced electrochemical performance in H2S detection from live cells. Anal. Chem. 91, 3912–3920 (2019). https://doi.org/10.1021/acs.analchem.8b04685

    Article  CAS  PubMed  Google Scholar 

  31. A. Shanmugasundaram, N.D. Chinh, Y.J. Jeong, T.F. Hou, D.S. Kim, D. Kim, Y.B. Kim, D.W. Lee, Hierarchical nanohybrids of B- and N-codoped graphene/mesoporous NiO nanodisks: an exciting new material for selective sensing of H2S at near ambient temperature. J. Mater. Chem. A. 7, 9263–9278 (2019). https://doi.org/10.1039/C9TA00755E

    Article  CAS  Google Scholar 

  32. M.A. Haija, A.F.S. Abu-Hani, N. Hamdan, S. Stephen, A.I. Ayesh, Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloys Compd. 690, 461–468 (2017). https://doi.org/10.1016/j.jallcom.2016.08.174

    Article  CAS  Google Scholar 

  33. H. Shang, H. Xu, Q. Liu, Y. Du, PdCu alloy nanosheets-constructed 3D flowers: new highly sensitive materials for H2S detection. Sens. Actuators, B. 289, 260-268 (2019). https://doi.org/10.1016/j.snb.2019.03.101

  34. M. Asad, M.H. Sheikhi, M. Pourfath, M. Moradi, High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B. 210, 1–8 (2015). https://doi.org/10.1016/j.snb.2014.12.086

    Article  CAS  Google Scholar 

  35. P. Balasubramanian, S.B. He, H.H. Deng, H.P. Peng, W. Chen, Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine. Sens. Actuators, B. 320, 128374 (2020). https://doi.org/10.1016/j.snb.2020.128374

  36. N. Ahmad, A.S. Al-Fatesh, R. Wahab, M. Alam, A.H. Fakeeha, Synthesis of silver nanoparticles decorated on reduced graphene oxide nanosheets and their electrochemical sensing towards hazardous 4-nitrophenol. J. Mater. Sci.: Mater. Electron.31, 11927-11937 (2020). https://doi.org/10.1007/s10854-020-03747-3

  37. M.D. Brown, J.R. Hall, M.H. Schoenfisch, A direct and selective electrochemical hydrogen sulfide sensor. AnalyticaChimica Acta. 1045, 67-76 (2019). https://doi.org/10.1016/j.aca.2018.08.054

  38. D. Filotasac, I.Z. Batai, G. Pozsgaia, L. Nagya, E. Pintéra, G. Nagya, Highly sensitive potentiometric measuring method for measurement of free H2S in physiologic samples. Sens. Actuators B Chem. 243, 326–331 (2017). https://doi.org/10.1016/j.snb.2016.11.102

    Article  CAS  Google Scholar 

  39. Agency for Toxic Substances and Disease Registry, Toxicological profile for hydrogen sulfide, U. S. Department of Health and Human Services, Public Health and services. Atlanta, Georgia, 137 (2006). https://www.atsdr.cdc.gov/toxprofiles/tp114.pdf

  40. B.R. Sathe, M.S. Risbud, S. Patil, K.S. Ajayakumar, R.C. Naik, I.S. Mulla, V. K. Pillai, Highly sensitive nanostructured platinum electrocatalysts for CO oxidation: Implications for CO sensing and fuel cell performance. Sens. Actuators A: Phys 138(2), 376–383 (2007). https://doi.org/10.1016/j.sna.2007.05.013

  41. N.S. Lawrence, L. Jiang, T.G.J. Jones, R.G. Compton, A thin-layer amperometric sensor for hydrogen sulfide: the use of microelectrodes to achieve a membrane-independent response for clark-type. Sensors. Anal. Chem. 75, 2499 (2003). https://doi.org/10.1021/ac0206465

    Article  CAS  PubMed  Google Scholar 

  42. E. Zdrachek, E. Bakker, Potentiometric Sensing. Anal. Chem. 91, 2-26 (2019). https://doi.org/10.1021/acs.analchem.8b04681

  43. B. Peng , J. Cui, Y. Wang, J. Liu, H. Zheng, L. Jin, X. Zhang, Y. Zhang, Y. Wu, CeO2−x/C/rGO nanocomposites derived from Ce-MOF and graphene oxide as a robust platform for highly sensitive uric acid detection. Nanoscale.10, 1939-1945 (2018). https://doi.org/10.1039/C7NR08858B

  44. Q. Diao, Y. Yin, W. Jia, X. Xu, Y. Ding, X. Zhang, J. Cao, K. Yang, Highly sensitive ethanol sensor based on Ce-doped WO3 with raspberry-like architecture. Mater. Res. Express.7, 115012 (2020). https://iopscience.iop.org/article/doi.org/10.1088/2053-1591/abcabf

  45. P.P. Chavan, V.S. Sapner, A. V Munde, S. M Mali, B.R. Sathe, Synthesis of metal-free nanoporous carbon with few-layer graphene electrocatalyst for electrochemical NO2− oxidation. ChemistrySelect.6, 9847-9852 (2021). https://doi.org/10.1002/slct.202102625

  46. S.S. Narwade, S.M. Mali, A.K. Tapre, B.R. Sathe, Enhanced electrocatalytic H2S splitting on a multiwalled carbon nanotubes-graphene oxide nanocomposite. NJC. 45, 20266-20271 (2021). https://doi.org/10.1039/D1NJ00432H

  47. S.S. Narwade, S.M. Mali, R.V. Digraskar, V.S. Sapner, B.R. Sathe, Ni/NiO@rGO as an efficient bifunctional electrocatalyst for enhanced overall water splitting reactions. Int. J. Hydrog. Energy. 44, 27001-27009 (2019).https://doi.org/10.1016/j.ijhydene.2019.08.147

  48. V.S. Sapner, P.P. Chavan, R.V. Digraskar, S.S. Narwade, B.B. Mulik, S.M. Mali, B.R. Sathe, Tyramine functionalized graphene: metal-free electrochemical non-enzymatic biosensing of hydrogen peroxide. Chem Electro Chem. 5, 3191-3197 (2019). https://doi.org/10.1002/celc.201801083

  49. B.B. Mulik, B.D. Bankar, A.V. Munde, A.V. Biradar, T. Asefa and B.R. Sathe, Facile synthesis and characterization of γ-Al 2 O 3 loaded on reduced graphene oxide for electrochemical reduction of CO 2, Sustain. Energy Fuels. 6, 5308-5315 (2022). https://doi.org/10.1039/D2SE00953F

  50. S. Sagadevan, M.R. Johan, J. AnitaLett, Fabrication of reduced graphene oxide/CeO2 nanocomposite for enhanced electrochemical performance. Appl. Phys. A. 125, 315 (2019).https://doi.org/10.1007/s00339-019-2625-6

  51. S. Wang, F. Gao, Y. Zhao, N. Liu, T. Tan, X. Wang, Two-dimensional CeO2/RGO composite-modified separator for lithium/sulfur batteries. Nanoscale Res. Lett. 377, 1–9 (2018). https://doi.org/10.1186/s11671-018-2798-5

    Article  CAS  Google Scholar 

  52. A.V. Munde, B.B. Mulik, P.P. Chavan, V.S. Sapner, S.S. Narwade, S.M. Mali, B.R. Sathe, Electrocatalytic ethanol oxidation on cobalt–bismuth nanoparticle-decorated reduced graphene oxide (Co–Bi@rGO): reaction pathway investigation toward direct ethanol fuel cells. J. Phys. Chem. C. 4, 2345-2356 (2021). https://doi.org/10.1039/C7RA11676D

  53. R. Vinoth, P. Karthik, C. Muthamizhchelvan, B. Neppolian, M. Ashokkumar, Carrier separation and charge transport characteristics of reduced graphene oxide supported visible-light active photocatalysts. Phys. Chem. Chem. Phys. 18, 5179–5191 (2016). https://doi.org/10.1039/C5CP08041J

    Article  CAS  PubMed  Google Scholar 

  54. B.B. Mulik, B.D. Bankar, A.V. Munde, A.V. Biradar, B.R. Sathe, Bismuth-oxide-decorated graphene oxide hybrids for catalytic and electrocatalytic reduction of CO2Chem. Eur. J. 26, 8801–8809 (2020). https://doi.org/10.1002/chem.202001589

    Article  CAS  Google Scholar 

  55. E.A. Khudaish, A.T. Al-Hinai, The catalytic activity of vanadium pentoxide film modified electrode on the electrochemical oxidation of hydrogen sulfide in alkaline solutions. J. Electro Chem. 587, 108–114 (2006). https://doi.org/10.1016/j.jelechem.2005.10.023

    Article  CAS  Google Scholar 

  56. H. Selvaraj, K. Chandrasekarana, R. Gopalkrishnan, Recovery of solid sulfur from hydrogen sulfide gas by an electrochemical membrane cell. RSC Adv. 6, 3735–3741 (2016). https://doi.org/10.1039/C5RA19116E

    Article  CAS  Google Scholar 

  57. L. Wang, P. Lu, C. Liu, L. Wang, Electro-oxidation of sulfide on Ti/RuO2 electrode in an aqueous alkaline solution. Int. J. Electrochem. Sci. 10, 8374 (2015). https://www.semanticscholar.org/paper/Electro-oxidation-of-Sulfide-on-Ti-RuO2-Electrode-Wang-Lu/579c6002f699f3c6ddee95b3ec47387851a7ee46

  58. Y. Triana, M. Tomisaki, Y. Einaga. Oxidation reaction of dissolved hydrogen sulfide using boron doped diamond. J. Electroanal. Chem. 873, 114411 (2020). https://doi.org/10.1016/j.jelechem.2020.114411

  59. X. Liu, L. He, P. Li, X. Li, P. Zhang, A direct electrochemical H2S sensor based on Ti3C2Tx MXene. ChemElectroChem. 8, 3658-3665 (2021). https://doi.org/10.1002/celc.202100964

  60. B.B. Mulik, S.T. Dhumal, V.S. Sapner, N.N.M.A. Rehman, P.P. Dixit, B.R. Sathe, Graphene oxide-based electrochemical activation of ethionamide towards enhanced biological activity. RSC Adv. 9, 35463-35472 (2019). https://doi.org/10.1039/C9RA06681K

  61. T.J. Ehirim, O.C. Ozoemena, P.V. Mwonga, A.B. Haruna, T.P. Mofokeng, K.D. Wael, K.I. Ozoemena, Onion-like carbons provide a favorable electrocatalytic platform for the sensitive detection of tramadol drug, ACS Omega. 7, 47892-47905 (2022). https://doi.org/10.1021/acsomega.2c05722

  62. X. Zhang, Y. Tang, S. Qu, J. Da, Z. Hao, H2S-selective catalytic oxidation: catalysts and processes. ACS Catal. 5, 1053–1067 (2015). https://doi.org/10.1021/cs501476p

    Article  CAS  Google Scholar 

  63. Q. Huang, W. Li, T. Wu, X. Ma, K. Jiang, X. Jin. Monoethanolamine-enabled electrochemical detection of H2S in a hydroxyl-functionalized ionic liquid. ElectrochemComm. 88, 93-96 (2018). https://doi.org/10.1016/j.elecom.2017.12.024

  64. K. Mukherjee, A.P.S. Gaur, S.B. Majumder, Investigations on irreversible- and reversible-type gas sensing for ZnO and Mg0.5Zn0.5Fe2O4 chemi-resistive sensors. J. Phys. D: Appl. Phys. 45, 505306 (2012). https://doi.org/10.1088/0022-3727/45/50/505306

Download references

Acknowledgements

We acknowledge the financial support provided by FAST TRACK DST-SERB New Delhi, Ref. File No. (SB/FT/CS/153/2011) New Delhi (India), DAE-BRNS, Mumbai (India) research project (Ref F. No. 34/20/06/2014-BRNS/21gs) and DST-SERB Delhi, research project latter no. (SERB/F/7490/2016-17). We are also thankful to the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, for providing the laboratory facility.

Funding

FAST TRACK DST-SERB New Delhi, Ref. File No. (SB/FT/CS/153/2011). Board of Research in Nuclear Sciences, Ref F. No. 34/20/06/2014-BRNS/21gs. Science and Engineering Research Board, SERB/F/7490/2016-17. Human Resource Development Centre, India, Sanction no: 01(2922)/18/EMR-II dated 11-10-2021.

Author information

Authors and Affiliations

Authors

Contributions

Shivsharan M. Mali and Shankar S. Narwade wrote the manuscript. Balaji B. Mulik and Vijay S. Sapner supported for characterization, analyzed, and helped electrochemical measurements. Shubham J. Annadate helped synthesize sensor materials. Dr Bhaskar Sathe gave the idea, guided all the projects, and reviewed the manuscript.

Corresponding author

Correspondence to Bhaskar R. Sathe.

Ethics declarations

Ethical Approval

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 278 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, S.M., Narwade, S.S., Mulik, B.B. et al. Nanostructured Ce/CeO2-rGO: Highly Sensitive and Selective Electrochemical Hydrogen Sulfide (H2S) Sensor. Electrocatalysis 14, 857–868 (2023). https://doi.org/10.1007/s12678-023-00839-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-023-00839-6

Keywords

Navigation