Skip to main content
Log in

A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The thermal management of electronic devices has attracted significant research attention in the recent year. However, the commonly used thermal management materials at this stage are mainly phase change materials (PCMs), which are limited by their relatively low enthalpy. In this study, the metal–organic framework MIL-101(Cr) was synthesised by an environmentally friendly and low-cost L-malic acid as the mineralising agent. The as-prepared MIL-101(Cr) composite coating was utilised as a sorbent for a passive thermal management strategy, through a vapour sorption–desorption process. By coating the as-prepared MIL-101(Cr) powder onto a metal substrate, a temperature drop for 25 min (maximum 8.6 °C) was achieved for 0.256 g of coating at a heating power of 2.5 W. The use of latent heat has emerged as an attractive method for intermittent heat dissipation. The equivalent enthalpy of the composite coating could reach as high as 1171.9 J/gcoating, indicating a significant improvement in the thermal management performance compared with the conventional PCMs.

Graphical abstract

Summary: A composite coating for thermal management was obtained by silicate solution and powder MIL-101(Cr).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hao M, Li J, Park S, Moura S, Dames C (2018) Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat Energy 3:899–906

    Article  CAS  Google Scholar 

  2. Ci H, Chang H, Wang R, Wei T, Wang Y, Chen Z, Sun Y, Dou Z, Liu Z, Li J (2019) Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv Mater 31:1901624

    Article  Google Scholar 

  3. Zhang P, Wang J, Sheng W, Wang F, Zhang J, Zhu F, Zhuang X, Jordan R, Schmidt OG, Feng X (2018) Thermoswitchable on-chip microsupercapacitors: one potential self-protection solution for electronic devices. Energy Environ Sci 11:1717–1722

    Article  CAS  Google Scholar 

  4. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  5. Huang Y, Zhu M, Huang Y, Pei Z, Li H, Wang Z, Xue Q, Zhi C (2016) Multifunctional energy storage and conversion devices. Adv Mater 28:8344–8364

    Article  CAS  Google Scholar 

  6. Lou Z, Li L, Wang L, Shen G (2017) Recent progress of self-powered sensing systems for wearable electronics. Small 13:1701791

    Article  Google Scholar 

  7. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  8. Zhai Y, Yang W, Xie X, Sun X, Wang J, Yang X, Naik N, Kimura H, Du W, Guo Z (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  9. Hyun DC, Levinson NS, Jeong U, Xia Y (2014) Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew Chem Int Ed 53:3780–3795

    Article  CAS  Google Scholar 

  10. Aftab W, Huang X, Wu W, Liang Z, Mahmood A, Zou R (2018) Nanoconfined phase change materials for thermal energy applications. Energy Environ Sci 11:1392–1424

    Article  CAS  Google Scholar 

  11. Ling Z, Zhang Z, Shi G, Fang X, Wang L, Gao X, Fang Y, Xu T, Wang S, Liu X (2014) Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev 31:427–438

    Article  Google Scholar 

  12. Hu X, Wu H, Lu X, Liu S, Qu J (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4:478–491

    Article  CAS  Google Scholar 

  13. Tu J, Li H, Zhang J, Hu D, Cai Z, Yin X, Dong L, Huang L, Xiong C, Jiang M (2019) Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv Compos Hybrid Mater 2:471–480

    Article  CAS  Google Scholar 

  14. Xie Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4:543–551

    Article  CAS  Google Scholar 

  15. Demir H, Mobedi M, Ülkü S (2008) A review on adsorption heat pump: problems and solutions. Renew Sustain Energy Rev 12:2381–2403

    Article  Google Scholar 

  16. Habib K, Saha BB, Koyama S (2014) Study of various adsorbent–refrigerant pairs for the application of solar driven adsorption cooling in tropical climates. Appl Therm Eng 72:266–274

    Article  CAS  Google Scholar 

  17. Bag PP, Singh GP, Singha S, Roymahapatra G (2020) Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng Sci 13:1–10

    Google Scholar 

  18. Fan X, Liu Z, Huang J, Han D, Qiao Z, Liu H, Du J, Yan H, Ma Y, Zhang C (2021) Synthesis, curing mechanism, thermal stability, and surface properties of fluorinated polybenzoxazines for coating applications. Adv Compos Hybrid Mater 5:322–334

    Article  Google Scholar 

  19. Cheng W, Wang Y, Ge S, Ding X, Cui Z, Shao Q (2021) One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Adv Compos Hybrid Mater 4:150–161

    Article  CAS  Google Scholar 

  20. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    Article  CAS  Google Scholar 

  21. Ahmadi SAR, Kalaee MR, Moradi O, Nosratinia F, Abdouss M (2021) Core–shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv Compos Hybrid Mater 4:1384–1397

    Article  CAS  Google Scholar 

  22. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:6149

    Article  Google Scholar 

  23. Hönicke IM, Senkovska I, Bon V, Baburin IA, Bönisch N, Raschke S, Evans JD, Kaskel S (2018) Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew Chem Int Ed 57:13780–13783

    Article  Google Scholar 

  24. Kayal S, Sun B, Chakraborty A (2015) Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy 91:772–781

    Article  CAS  Google Scholar 

  25. Boyd PG, Chidambaram A, García-Díez E, Ireland CP, Daff TD, Bounds R, Gładysiak A, Schouwink P, Moosavi SM, Maroto-Valer MM (2019) Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576:253–256

    Article  CAS  Google Scholar 

  26. Niaz S, Manzoor T, Pandith AH (2015) Hydrogen storage: materials, methods and perspectives. Renew Sustain Energy Rev 50:457–469

    Article  CAS  Google Scholar 

  27. Cadiau A, Belmabkhout Y, Adil K, Bhatt PM, Pillai RS, Shkurenko A, Martineau-Corcos C, Maurin G, Eddaoudi M (2017) Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 356:731

    Article  CAS  Google Scholar 

  28. Nong W, Liu X, Wang Q, Wu J, Guan Y (2020) Metal-organic framework-based materials: synthesis, stability and applications in food safety and preservation. ES Food Agrofor 1:11–40

    Google Scholar 

  29. Duan J, Pan Y, Liu G, Jin W (2018) Metal-organic framework adsorbents and membranes for separation applications. Curr Opin Chem Eng 20:122–131

    Article  Google Scholar 

  30. Kim EJ, Siegelman RL, Jiang HZH, Forse AC, Lee JH, Martell JD, Milner PJ, Falkowski JM, Neaton JB, Reimer JA (2020) Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369:392–396

    Article  CAS  Google Scholar 

  31. Wu Y, Lv Z, Zhou X, Peng J, Tang Y, Li Z (2019) Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chem Eng J 355:815–821

    Article  CAS  Google Scholar 

  32. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitor. Eng Sci 9:50–59

    Google Scholar 

  33. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ 8:65–77

    CAS  Google Scholar 

  34. Khutia A, Rammelberg HU, Schmidt T, Henninger S, Janiak C (2013) Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem Mater 25:790–798

    Article  CAS  Google Scholar 

  35. Sun Z, Wang M, Fan J, Feng R, Zhou Y, Zhang L (2021) TiO2@MIL-101(Cr) nanocomposites as an efficient photocatalyst for degradation of toluene. Adv Compos Hybrid Mater 4:1322–1329

    Article  CAS  Google Scholar 

  36. Liu L, Corma A (2020) Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat Rev Mater 6:244–263

    Article  Google Scholar 

  37. Anderson AE, Baddeley CJ, Wright PA (2018) Tuning Pd-nanoparticle@MIL-101(Cr) catalysts for tandem reductive amination. Catal Lett 148:154–163

    Article  CAS  Google Scholar 

  38. Zhang F, Cheng W, Yu Z, Ge S, Shao Q, Pan D, Liu B, Wang X, Guo Z (2021) Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater 4:1330–1342

    Article  CAS  Google Scholar 

  39. He T, Kong XJ, Zhou J, Zhao C, Wang K, Wu XQ, Lv XL, Si GR, Li JR, Nie ZR (2021) A practice of reticular chemistry: construction of a robust mesoporous palladium metal–organic framework via metal metathesis. J Am Chem Soc 143:9901–9911

    Article  CAS  Google Scholar 

  40. He T, Geng K, Jiang D (2019) Engineering covalent organic frameworks for light-driven hydrogen production from water. ACS Mater Lett 1:203–208

    Article  CAS  Google Scholar 

  41. Wang K, Lv XL, Feng D, Li J, Chen S, Sun J, Song L, Xie Y, Li JR, Zhou HC (2016) Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. J Am Chem Soc 138:914–919

    Article  CAS  Google Scholar 

  42. Furukawa H, Gandara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–4381

    Article  CAS  Google Scholar 

  43. Liu X, Wang X, Kapteijn F (2020) Water and metal–organic frameworks: from interaction toward utilization. Chem Rev 120:8303–8377

    Article  CAS  Google Scholar 

  44. Hanikel N, Prévot MS, Fathieh F, Kapustin EA, Lyu H, Wang H, Diercks NJ, Glover TG, Yaghi OM (2019) Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent Sci 5:1699–1706

    Article  CAS  Google Scholar 

  45. Du H, Ren X, Pan D, An Y, Wei Y, Liu X, Hou L, Liu B, Liu M, Guo Z (2021) Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D. Adv Compos Hybrid Mater 4:401–414

    Article  CAS  Google Scholar 

  46. Zhu Q, Huang Y, Li Y, Zhou M, Xu S, Liu X, Liu C, Yuan B, Guo Z (2021) Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv Compos Hybrid Mater 4:780–792

    Article  CAS  Google Scholar 

  47. Madhusudhana AM, Mohana KNS, Hegde MB, Nayak SR, Rajitha K, Swamy NK (2020) Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv Compos Hybrid Mater 3:141–155

    Article  CAS  Google Scholar 

  48. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu BB, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x

  49. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00450-1

  50. Si Y, Li J, Cui B, Tang D, Yang L, Murugadoss V, Maganti S, Huang M, Guo Z (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00446-x

  51. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875

    Article  CAS  Google Scholar 

  52. Leng K, Sun Y, Li X, Sun S, Xu W (2016) Rapid synthesis of metal–organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid. Cryst Growth Des 16:1168–1171

    Article  CAS  Google Scholar 

  53. Shuzhi L, Fulin Z (2017) Progress in synthesis, modification and catalytic application of metal-organic frameworks MIL-101. Chem Ind Eng Progr 36:918–925

    Google Scholar 

  54. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  Google Scholar 

  55. Ehrenmann J, Henninger SK, Janiak C (2011) Water adsorption characteristics of MIL-101 for heat-transformation applications of MOFs. Eur J Inorg Chem 2011:471–474

    Article  Google Scholar 

  56. Fei S, Hsu WL, Delaunay JJ, Daiguji H (2021) Molecular dynamics study of water confined in MIL-101 metal–organic frameworks. J Chem Phys 154:144503

    Article  CAS  Google Scholar 

  57. Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S (2009) Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater 120:325–330

    Article  Google Scholar 

  58. Wickenheisser M, Herbst A, Tannert R, Milow B, Janiak C (2015) Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe, Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications. Microporous Mesoporous Mater 215:143–153

    Article  CAS  Google Scholar 

  59. Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger SK, Janiak C (2015) High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr). Dalton Trans 44:16791–16801

    Article  CAS  Google Scholar 

  60. Akiyama G, Matsuda R, Sato H, Hori A, Takata M, Kitagawa S (2012) Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater 157:89–93

    Article  CAS  Google Scholar 

  61. Wang C, Hua L, Yan H, Li B, Tu Y, Wang R (2020) A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 4:435–447

    Article  CAS  Google Scholar 

  62. Xu Z, Yin Y, Shao J, Liu Y, Zhang L, Cui Q, Wang H (2020) Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube. Energy 191:116302

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Steadily Supporting Scientific Research Project of State Administration of Science, Technology and Industry for National Defense (WDZC20195500505), the National Natural Science Foundation of China (grant 61871060) and the Changsha Science and Technology Project (kq2004069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Zu or Wei Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Zu, M., Cheng, H. et al. A composite coating based on metal–organic framework MIL-101(Cr) synthesised by L-malic acid as mineralising agent for thermal management. Adv Compos Hybrid Mater 5, 2896–2905 (2022). https://doi.org/10.1007/s42114-022-00481-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00481-8

Keywords

Navigation