Skip to main content

Advertisement

Log in

IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism.

Methods

The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms.

Results

We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression.

Conclusions

Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

ATCC:

American Type Culture Collection

BCA:

bicinchoninic acid

CCK-8:

Cell Counting Kit-8

ECAR:

extracellular acidification rate

ERK:

extracellular signal-regulated kinase

FBS:

fetal bovine serum

FCCP:

carbonyl cyanide 4-[trifluoromethoxy] phenylhydrazone

GEO:

Gene Expression Omnibus

GSEA:

gene set enrichment analysis

GTEx:

Genotype-Tissue Expression

IHC-P:

immunohistochemical

IL-1:

interleukin-1

IRAKs:

interleukin-1 receptor-associated kinases

JAK:

Janus kinase

MA:

maslinic acid

MyD88:

myeloid differentiation factor 88

NF-κB:

nuclear factor-κB

OCR:

oxygen consumption rate

PDAC:

pancreatic ductal adenocarcinoma

qRT-PCR:

quantitative real-time polymerase chain reaction

RNAi:

RNA interference

R&A:

rotenone and antimycin A

SUV max:

maximum standardized uptake value

TCGA:

The Cancer Genome Atlas

TLR9:

Toll-like receptor 9

TME:

tumor microenvironment

TRAF6:

tumor necrosis factor receptor associated factor 6

WB:

Western blotting

2-DG:

2-deoxy-D-glucose

References

  1. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer Statistics. CA Cancer J. Clin. 71, 7–33 (2021)

    Article  Google Scholar 

  2. X. Guo, Z. Cui, Current diagnosis and treatment of pancreatic cancer in China. Pancreas 31, 13–22 (2005)

    Article  CAS  Google Scholar 

  3. A. Makohon-Moore, C.A. Iacobuzio-Donahue, Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16, 553–565 (2016)

    Article  CAS  Google Scholar 

  4. W.J. Ho, E.M. Jaffee, L. Zheng, The tumour microenvironment in pancreatic cancer - clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 17, 527–540 (2020)

    Article  Google Scholar 

  5. S.K. Dougan, The pancreatic cancer microenvironment. Cancer J. 23, 321–325 (2017)

    Article  Google Scholar 

  6. I. Martinez-Reyes, N.S. Chandel, Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021)

    Article  CAS  Google Scholar 

  7. L.M. Coussens, Z. Werb, Inflammation and cancer. Nature 420, 860–867 (2002)

    Article  CAS  Google Scholar 

  8. S. Flannery, A.G. Bowie, The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem. Pharmacol. 80, 1981–1991 (2010)

    Article  CAS  Google Scholar 

  9. T. Kawagoe, S. Sato, K. Matsushita, H. Kato, K. Matsui, Y. Kumagai, T. Saitoh, T. Kawai, O. Takeuchi, S. Akira, Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008)

    Article  CAS  Google Scholar 

  10. J.A. DiDonato, F. Mercurio, M. Karin, NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 246, 379–400 (2012)

    Article  Google Scholar 

  11. B. Hoesel, J.A. Schmid, The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 12, 86 (2013)

    Article  CAS  Google Scholar 

  12. Y. Xu, H. Liu, S. Liu, Y. Wang, J. Xie, T.E. Stinchcombe, L. Su, R. Zhang, D.C. Christiani, W. Li, Q. Wei, Genetic variant of IRAK2 in the toll-like receptor signaling pathway and survival of non-small cell lung cancer. Int. J. Cancer 143, 2400–2408 (2018)

    Article  CAS  Google Scholar 

  13. A. Jain, S. Kaczanowska, E. Davila, IL-1 receptor-associated kinase signaling and its role in inflammation, cancer progression, and therapy resistance. Front. Immunol. 5, 553 (2014)

    Article  Google Scholar 

  14. T. Zhang, X. Feng, T. Zhou, N. Zhou, X. Shi, X. Zhu, J. Qiu, G. Deng, C. Qiu, miR-497 induces apoptosis by the IRAK2/NF-kappaB axis in the canine mammary tumour. Vet. Comp. Oncol. 19, 69–78 (2021)

    Article  Google Scholar 

  15. H. Zhou, H. Wang, M. Yu, R.C. Schugar, W. Qian, F. Tang, W. Liu, H. Yang, R.E. McDowell, J. Zhao, J. Gao, A. Dongre, J.A. Carman, M. Yin, J.A. Drazba, R. Dent, C. Hine, Y.R. Chen, J.D. Smith, P.L. Fox, J.M. Brown, X. Li, IL-1 induces mitochondrial translocation of IRAK2 to suppress oxidative metabolism in adipocytes. Nat. Immunol. 21, 1219–1231 (2020)

    Article  CAS  Google Scholar 

  16. S. Patrick, Ward, B. Craig, Thompson, Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 21, 297–308 (2012)

    Article  Google Scholar 

  17. L.P. Hu, K.X. Zhou, Y.M. Huo, D.J. Liu, Q. Li, M.W. Yang, P.Q. Huang, C.J. Xu, G.A. Tian, L.L. Yao, X.L. Zhang, Y.H. Wang, J. Li, Z.G. Zhang, S.H. Jiang, X. Xing, X. Wang, W.T. Qin, Q. Yang, Single-cell RNA sequencing reveals that targeting HSP90 suppresses PDAC progression by restraining mitochondrial bioenergetics. Oncogenesis 10, 22 (2021)

    Article  Google Scholar 

  18. D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  Google Scholar 

  19. S.H. Jiang, J. Li, F.Y. Dong, J.Y. Yang, D.J. Liu, X.M. Yang, Y.H. Wang, M.W. Yang, X.L. Fu, X.X. Zhang, Q. Li, X.F. Pang, Y.M. Huo, J. Li, J.F. Zhang, H.Y. Lee, S.J. Lee, W.X. Qin, J.R. Gu, Y.W. Sun, Z.G. Zhang, Increased serotonin signaling contributes to the Warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology 153, 277–291 e219 (2017)

  20. L.P. Hu, X.X. Zhang, S.H. Jiang, L.Y. Tao, Q. Li, L.L. Zhu, M.W. Yang, Y.M. Huo, Y.S. Jiang, G.A. Tian, X.Y. Cao, Y.L. Zhang, Q. Yang, X.M. Yang, Y.H. Wang, J. Li, G.G. Xiao, Y.W. Sun, Z.G. Zhang, Targeting purinergic receptor P2Y2 prevents the growth of pancreatic ductal adenocarcinoma by inhibiting cancer cell glycolysis. Clin. Cancer Res. 25, 1318–1330 (2019)

    Article  CAS  Google Scholar 

  21. Y. Jiang, R. He, Y. Jiang, D. Liu, L. Tao, M. Yang, C. Lin, Y. Shen, X. Fu, J. Yang, J. Li, Y. Huo, R. Hua, W. Liu, J. Zhang, B. Shen, Z. Zhang, Y. Sun, Transcription factor NFAT5 contributes to the glycolytic phenotype rewiring and pancreatic cancer progression via transcription of PGK1. Cell. Death Dis. 10, 948 (2019)

    Article  CAS  Google Scholar 

  22. M. Muzio, J. Ni, P. Feng, V.M. Dixit, IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997)

    Article  CAS  Google Scholar 

  23. C. Li, Z. Yang, C. Zhai, W. Qiu, D. Li, Z. Yi, L. Wang, J. Tang, M. Qian, J. Luo, M. Liu, Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappaB signaling pathway. Mol. Cancer 9, 73 (2010)

    Article  Google Scholar 

  24. M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)

    Article  CAS  Google Scholar 

  25. P.M. Smith, B. Jacque, J.R. Conner, A. Poltorak, M.J. Stadecker, IRAK-2 regulates IL-1-mediated pathogenic Th17 cell development in helminthic infection. PLoS Pathog. 7, e1002272 (2011)

  26. H. Wang, S. El Maadidi, J. Fischer, E. Grabski, S. Dickhofer, S. Klimosch, S.M. Flannery, A. Filomena, O.O. Wolz, N. Schneiderhan-Marra, M.W. Loffler, M. Wiese, T. Pichulik, B. Mullhaupt, D. Semela, J.F. Dufour, P.Y. Bochud, A.G. Bowie, U. Kalinke, T. Berg, A.N. Weber, G. East, C.V.S.G. Swiss Hepatitis, A frequent hypofunctional IRAK2 variant is associated with reduced spontaneous hepatitis C virus clearance. Hepatology 62, 1375–1387 (2015)

    Article  CAS  Google Scholar 

  27. C.C. Yu, M.W.Y. Chan, H.Y. Lin, W.Y. Chiou, R.I. Lin, C.A. Chen, M.S. Lee, C.L. Chi, L.C. Chen, L.W. Huang, C.H. Chew, F.C. Hsu, H.J. Yang, S.K. Hung, IRAK2, an IL1R/TLR immune mediator, enhances radiosensitivity via modulating caspase 8/3-mediated apoptosis in oral squamous cell carcinoma. Front. Oncol. 11, 647175 (2021)

    Article  Google Scholar 

  28. S. Ren, J. Wang, A. Xu, J. Bao, W.C. Cho, J. Zhu, J. Shen, Integrin alpha6 overexpression promotes lymphangiogenesis and lymphatic metastasis via activating the NF-kappaB signaling pathway in lung adenocarcinoma. Cell. Oncol. 45, 57–67 (2022)

    Article  CAS  Google Scholar 

  29. F.R. Greten, L. Eckmann, T.F. Greten, J.M. Park, Z.W. Li, L.J. Egan, M.F. Kagnoff, M. Karin, IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004)

    Article  CAS  Google Scholar 

  30. W. Wang, X. Li, Y. Xu, W. Guo, H. Yu, L. Zhang, Y. Wang, X. Chen, Acetylation-stabilized chloride intracellular channel 1 exerts a tumor-promoting effect on cervical cancer cells by activating NF-kappaB. Cell. Oncol. 44, 557–568 (2021)

    Article  CAS  Google Scholar 

  31. H.H. Chang, A. Moro, C.E.N. Chou, D.W. Dawson, S. French, A.I. Schmidt, J. Sinnett-Smith, F. Hao, O.J. Hines, G. Eibl, E. Rozengurt, Metformin decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity in the conditional KrasG12D mouse model. Sci. Rep. 8, 5899 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81874175 to Y.W.S.; 81902377 to D.J.L.; 81702844 to Y.M.H.; 81702726 to W.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.H.J. and W.L. designed the study and reviewed the manuscript. J.Y., D.J.L. and J.H.Z. performed the in vitro and in vivo experiments and wrote the manuscript. R.Z.H. and D.P.X. conducted the bioinformatics analyses. W.L., X.M.K. and Y.W.S. were involved in the conceptualization, supervision, project administration and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yong-Wei Sun, Xian-Ming Kong, Shu-Heng Jiang or Wei Liu.

Ethics declarations

Ethics approval and consent to participate

The clinical sample study was approved under number RA-2019-116 assigned by the Research Ethics Committee of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University. All manipulations in the animal study were performed under approved protocol number 20141204 assigned by the Research Ethics Committee of East China Normal University. The mouse studies were undertaken in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Consent for publication

All authors declare that they agree to submit the article for publication.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 449 KB)

ESM 2

(PDF 6.00 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, DJ., Zheng, JH. et al. IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer. Cell Oncol. 45, 367–379 (2022). https://doi.org/10.1007/s13402-022-00670-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00670-z

Keywords

Navigation