Skip to main content

Advertisement

Log in

The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Cuproptosis, as a unique modality of regulated cell death, requires the involvement of ubiquitin-binding enzyme UBE2D2. However, the prognostic and immunotherapeutic values of UBE2D2 in pan-cancer remain largely unknown.

Methods

Using UCSC Xena, TIMER, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Human Protein Atlas (HPA) databases, we aimed to explore the differential expression pattern of UBE2D2 across multiple cancer types and to evaluate its association with patient prognosis, clinical features, and genetic variations. The association between UBE2D2 and immunotherapy response was assessed by gene set enrichment analysis, tumor microenvironment, immune gene co-expression and drug half maximal inhibitory concentration (IC50) analysis.

Results

The mRNA and protein levels of UBE2D2 were markedly elevated in most cancer types, and UBE2D2 exhibited prognostic significance in liver hepatocellular carcinoma (LIHC), kidney chromophobe (KICH), uveal melanomas (UVM), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and kidney renal papillary cell carcinoma (KIRP). UBE2D2 expression was correlated with clinical features, tumor mutation burden, microsatellite instability, and anti-tumor drug resistance in several tumor types. Gene enrichment analysis showed that UBE2D2 was significantly associated with immune-related pathways. The expression level of UBE2D2 was correlated with immune cell infiltration, including CD4 + T cells、Macrophages M2、CD8 + T cells in pan-cancer. PDCD1, CD274 and CTLA4 expression levels were positively correlated with UBE2D2 level in multiple cancers.

Conclusions

We comprehensively investigated the potential value of UBE2D2 as a prognostic and immunotherapeutic predictor for pan-cancer, providing a novel insight for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data sets analyzed during the current study are available in the UCSC Xena database (http://xena.ucsc.edu/), CPTAC database (https://pdc.cancer.gov/pdc/), Human Protein Atlas database (http://www.proteinatlas.org/), CellMiner database (https://discover.nci.nih.gov/cellminer/home.do), and RCSB PDB database (https://www.rcsb.org/). Other data may be obtained from the corresponding author upon reasonable request.

Abbreviations

ACC:

Adrenocortical carcinoma

BLCA:

Bladder urothelial carcinoma

BRCA:

Breast carcinoma

CESC:

Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL:

Cholangiocarcinoma

CI:

Confidence interval

COAD:

Colon adenocarcinoma

CPTAC:

Clinical Proteomic Tumor Analysis Consortium

DFI:

Disease-free interval

DLBC:

Lymphoid neoplasm diffuse large B-cell lymphoma

DSS:

Disease-specific survival

ESCA:

Esophageal carcinoma

GBM:

Glioblastoma multiforme

GSEA:

Gene Set Enrichment Analysis

GTEx:

Genote-Tissue Expression

HNSC:

Head and neck squamous cell carcinoma

HPA:

Human Protein Atlas

HR:

Hazard ratio

IC50:

Half maximal inhibitory concentration

ICIs:

Immune checkpoint inhibitors

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

LAML:

Acute myeloid leukemia

LGG:

Brain lower grade glioma

LIHC:

Liver hepatocellular carcinoma

LUAD:

Lung adenocarcinoma

LUSC:

Lung squamous cell carcinoma

MESO:

Mesothelioma

MSI:

Microsatellite instability

NK:

Natural killer

OS:

Overall survival

OV:

Ovarian serous cystadenocarcinoma

PAAD:

Pancreatic adenocarcinoma

PCPG:

Pheochromocytoma and paraganglioma

PDB:

Protein Data Bank

PFI:

Progression-free interval

PRAD:

Prostate adenocarcinoma

READ:

Rectum adenocarcinoma

SARC:

Sarcoma

SKCM:

Skin cutaneous melanoma

STAD:

Stomach adenocarcinoma

TCA:

Tricarboxylic acid

TCGA:

The Carcinoma Genome Atlas

TGCT:

Testicular germ cell tumors

THCA:

Thyroid carcinoma

THYM:

Thymoma

TIDE:

Tumor immune dysfunction and exclusion

TMB:

Tumor mutational burden

TME:

Tumor microenvironment

UCEC:

Uterine corpus endometrial carcinoma

UCS:

Uterine carcinosarcoma

UVM:

Uveal melanomas

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomarkers Prev. 2016;25:16–27.

    Article  PubMed  Google Scholar 

  2. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway. Signal Transduct Target Ther. 2022;7:158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 2021;39:357–67.

    Article  CAS  PubMed  Google Scholar 

  5. Ramchandani D, Berisa M, Tavarez DA, Li Z, Miele M, Bai Y, et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat Commun. 2021;12:7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao Y, Zhao J, Bulek K, Tang F, Chen X, Cai G, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun. 2020;11:900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Qin D, Tao Z, Wang B, Xie Y, Wang Y, et al. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer. Front Immunol. 2022;13:1056932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michalczyk K, Cymbaluk-Płoska A. The role of zinc and copper in gynecological malignancies. Nutrients. 2020;12:3732.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kazi Tani LS, Gourlan AT, Dennouni-Medjati N, Telouk P, Dali-Sahi M, Harek Y, et al. Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer. Front Med. 2021;8: 698167.

    Article  Google Scholar 

  10. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer. 2022;22:102–13.

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Yin D, Wu L. Identification of cuproptosis-related subtypes and development of a prognostic signature in colorectal cancer. Sci Rep. 2022;12:17348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14:2707–13.

    Article  CAS  PubMed  Google Scholar 

  17. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colwill K, Gräslund S. A roadmap to generate renewable protein binders to the human proteome. Nat Methods. 2011;8:551–8.

    Article  CAS  PubMed  Google Scholar 

  19. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goel MK, Khanna P, Kishore J. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res. 2010;1:274–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and Interpretation. Anesth Analg. 2018;126:1763–8.

    Article  PubMed  Google Scholar 

  23. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  24. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC, et al. Cell Miner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics. 2009;10:277.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30:1232–43.

    Article  CAS  PubMed  Google Scholar 

  27. Rizzo A, Ricci AD, Brandi G. PD-L1, TMB, MSI, and other predictors of response to immune checkpoint inhibitors in biliary tract cancer. Cancers. 2021;13:558.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Condelli V, Calice G, Cassano A, Basso M, Rodriquenz MG, Zupa A, et al. Novel epigenetic eight-gene signature predictive of poor prognosis and MSI-like phenotype in human metastatic colorectal carcinomas. Cancers. 2021;13:158.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morreale FE, Walden H. Types of ubiquitin ligases. Cell. 2016;165:248-e1.

    Article  CAS  PubMed  Google Scholar 

  30. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. E2 enzymes: more than just middle men. Cell Res. 2016;26:423–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7:378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li J, Wu F, Li C, Sun S, Feng C, Wu H, et al. The cuproptosis-related signature predicts prognosis and indicates immune microenvironment in breast cancer. Front Genet. 2022;13: 977322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Winkler GS, Albert TK, Dominguez C, Legtenberg YI, Boelens R, Timmers HT. An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J Mol Biol. 2004;337:157–65.

    Article  CAS  PubMed  Google Scholar 

  35. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, et al. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem. 1999;274:14823–30.

    Article  CAS  PubMed  Google Scholar 

  36. Chiang MH, Chen LF, Chen H. Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation. Biol Reprod. 2008;79:914–20.

    Article  CAS  PubMed  Google Scholar 

  37. Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S. The N terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin-conjugating enzyme. J Biol Chem. 2010;285:23687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer. 2020;6:392–406.

    Article  CAS  PubMed  Google Scholar 

  39. Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell. 2021;39:759–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12:71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  43. Monteith GR, Prevarskaya N, Roberts-Thomson SJ. The calcium-cancer signalling nexus. Nat Rev Cancer. 2017;17:367–80.

    Article  CAS  PubMed  Google Scholar 

  44. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022;32:30–44.

    Article  CAS  PubMed  Google Scholar 

  46. Kovalski JR, Kuzuoglu-Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J. 2022;41: e109823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 2018;24:2482–90.

    Article  CAS  PubMed  Google Scholar 

  48. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  49. Du W, Frankel TL, Green M, Zou W. IFNgamma signaling integrity in colorectal cancer immunity and immunotherapy. Cell Mol Immunol. 2022;19:23–32.

    Article  CAS  PubMed  Google Scholar 

  50. Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS-STING pathway in cancer. Cancer Discov. 2020;10:26–39.

    Article  CAS  PubMed  Google Scholar 

  51. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312.

    Article  CAS  PubMed  Google Scholar 

  52. Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol. 2021;14:176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, et al. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. J Hematol Oncol. 2023;16:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(548–63): e16.

    Google Scholar 

  55. Zhang F, Wang H, Yu J, Yao X, Yang S, Li W, et al. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Mol Cancer. 2021;20:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022;19:237–53.

    Article  CAS  PubMed  Google Scholar 

  58. Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126–33.

    Article  CAS  PubMed  Google Scholar 

  59. Lee YS, Radford KJ. The role of dendritic cells in cancer. Int Rev Cell Mol Biol. 2019;348:123–78.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer. 2022;22:791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yoshitomi H, Ueno H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases. Cell Mol Immunol. 2021;18:523–7.

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Wang C, Qiu J, Qu X, Peng J, Lu C, et al. Targeting CD96 overcomes PD-1 blockade resistance by enhancing CD8+ TIL function in cervical cancer. J Immunother Cancer. 2022;10:e003667.

  63. Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 2016;27:e43.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mendhiratta N, Muraki P, Sisk AE Jr, Shuch B. Papillary renal cell carcinoma: review. Urol Oncol. 2021;39:327–37.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82373155, 82103293, 82172651), the Natural Science Foundation of Anhui Province (2108085MH287), the Natural Science Foundation of Anhui Education Department for Distinguished Young Scholars (2022AH020074), the Natural Science Foundation of Anhui Education Department for Excellent Young Scholars (2022AH030123), the Support Plan for Outstanding Young Talents of Anhui Education Department (gxyq2021257), the Key Research and Development Project of Anhui Province (202104j07020019), the Science and Technology Project of Wuhu City (2022jc52) and the Talent Introduction Science Foundation of Yijishan Hospital, Wannan Medical College (No. YR202109 and YR202110).

Author information

Authors and Affiliations

Authors

Contributions

YF: conceptualization, data curation, formal analysis, investigation, methodology, software, validation, writing—original draft preparation, writing—review and editing. DC: conceptualization, data curation, formal analysis, methodology, validation, visualization, writing—original draft preparation, writing—review and editing. RD: methodology, software, validation. YL: data curation, investigation, supervision, validation. ZW: investigation, supervision, visualization. PG: software, supervision, visualization. MZ: software, supervision, visualization. XW: supervision, writing—review and editing. XZ: conceptualization, data curation, methodology, resources, validation, writing—review and editing, funding acquisition. JC: conceptualization, project administration, resources, validation, funding acquisition.

Corresponding authors

Correspondence to Xueliang Zuo or Juan Cai.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6688 KB)

Supplementary file2 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Y., Cao, D., Dong, R. et al. The cuproptosis-related gene UBE2D2 functions as an immunotherapeutic and prognostic biomarker in pan-cancer. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03495-4

Keywords

Navigation