Skip to main content

Advertisement

Log in

Integrin α6 overexpression promotes lymphangiogenesis and lymphatic metastasis via activating the NF-κB signaling pathway in lung adenocarcinoma

  • Original Article
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Objective

It has been reported that tumor-associated lymphangiogenesis plays an important role in lymph node metastasis and contributes to the poor survival of lung adenocarcinoma (LUAD) patients. As yet, however, the molecular mechanism underlying LUAD-associated lymphangiogenesis has remained elusive.

Methods

Immunohistochemistry (IHC) was used to determine the expression of integrin subunit alpha 6 (ITGA6) and the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1) in clinicopathologically characterized LUAD specimens. The effect of ITGA6 overexpression on lymphangiogenesis and lymphatic metastasis was examined by tube formation, scratch wound-healing, and cell migration assays in vitro and a popliteal lymph node metastasis model in vivo. Mechanistically, overexpression of ITGA6 and activation of NF-κB signaling were examined by real-time PCR, ubiquitination and dual-luciferase reporter assays. Finally, high ITGA6 expression in LUAD tissue samples was related to copy number variation (CNV) using the TCGA database.

Results

We found that ITGA6 overexpression correlated with microlymphatic vessel density in LUAD specimens (p < 0.01). Importantly, by using a popliteal lymph node metastasis model, we found that ITGA6 upregulation significantly enhanced lymphangiogenesis and lymphatic metastasis in vivo (p < 0.05). In addition, we found that ITGA6 overexpression enhanced the capability of A549 and H1299 LUAD cells to induce tube formation and migration in human lymphatic endothelial cells (HLECs). Mechanistically, we found that ITGA6 sustained NF-κB activity via binding and promoting K63 polyubiquitination of TNF receptor-associated factor 2 (TRAF2). Finally, CNV analysis revealed ITGA6 amplification of 27.5% in the LUAD tissue samples in the TCGA database.

Conclusions

Taken together, our results uncover a plausible role for ITGA6 in mediating lymphangiogenesis and lymphatic metastasis and may provide a basis for targeting ITGA6 to treat LUAD lymphatic metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

ALL:

Acute lymphoblastic leukemia

ANGPTL4:

Angiopoietin-like 4

CNV:

Copy number variation

CXCL16:

CXC chemokine ligand 16

CRC:

Colorectal cancer

DAB:

Diaminobenzidine

DFS:

Disease-free survival

ECM:

Extracellular matrix

ESCC:

Esophageal squamous cell carcinoma

GALT:

Gut-associated lymphoid tissue

GBC:

Gallbladder carcinoma

GSEA:

Gene Set Enrichment Analysis

HLEC:

Human lymphatic endothelial cell

IHC:

Immunohistochemical

ITGA6:

Integrin subunit alpha 6

LUAD:

Lung adenocarcinoma

LYVE-1:

Lymphatic vessel endothelial hyaluronan receptor 1

MBC:

Metastatic breast cancer

NF-κB:

Nuclear factor-κB

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

qRT-PCR:

Quantitative real-time polymerase chain reaction

RIP1:

Receptor-interacting protein 1

TCGA:

The Cancer Genome Atlas

TNF-α:

Tumor necrosis factor alpha

TRAF2:

TNF receptor associated factor 2

TSPAN15:

Tetraspanin 15

VEGF:

Vascular endothelial growth factor

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021)

    Article  Google Scholar 

  2. R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017)

    Article  Google Scholar 

  3. K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri, A. Jemal, Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66, 271–289 (2016)

    Article  Google Scholar 

  4. N. Howlader, A.M. Noone, M. Krapcho, D. Miller, A. Brest, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D.R. Lewis, H.S. Chen, E.J. Feuer, and K.A(eds). Cronin, SEER cancer statistics review, 1975–2012. Nat. Cancer Inst. https://seer.cancer.gov/csr/1975_2018/, based on November 2020 SEER data submission, posted to the SEER web site, April 2021.

  5. H. Lin, W. Cheng, H. Yan, X. Zhang, Overexpression of the long noncoding RNA CCAT1 promotes metastasis via epithelial-to-mesenchymal transition in lung adenocarcinoma. Oncol. Lett. 16, 1809–1814 (2018)

    PubMed  PubMed Central  Google Scholar 

  6. S. Liu, Y. Li, W. Qi, Y. Zhao, A. Huang, W. Sheng, B. Lei, P. Lin, H. Zhu, W. Li, H. Shen, Expression of Tiam1 predicts lymph node metastasis and poor survival of lung adenocarcinoma patients. Diagn. Pathol. 9, 69 (2014)

    Article  Google Scholar 

  7. S. Maekawa, A. Iwasaki, T. Shirakusa, S. Enatsu, T. Kawakami, M. Kuroki, M. Kuroki, Correlation between lymph node metastasis and the expression of VEGF-C, VEGF-D and VEGFR-3 in T1 lung adenocarcinoma. Anticancer Res. 27, 3735–3741 (2007)

    CAS  PubMed  Google Scholar 

  8. Y. Feng, W. Wang, J. Hu, J. Ma, Y. Zhang, J. Zhang, Expression of VEGF-C and VEGF-D as significant markers for assessment of lymphangiogenesis and lymph node metastasis in non-small cell lung cancer. Anat. Rec. (Hoboken) 293, 802–812 (2010)

    Article  CAS  Google Scholar 

  9. F. Renyi-Vamos, J. Tovari, J. Fillinger, J. Timar, S. Paku, I. Kenessey, G. Ostoros, L. Agocs, I. Soltesz, B. Dome, Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin. Cancer Res. 11, 7344–7353 (2005)

    Article  CAS  Google Scholar 

  10. E. Burstein, C.S. Duckett, Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr. Opin. Cell Biol. 15, 732–737 (2003)

    Article  CAS  Google Scholar 

  11. D. Cilloni, G. Martinelli, F. Messa, M. Baccarani, G. Saglio, Nuclear factor kB as a target for new drug development in myeloid malignancies. Haematologica 92, 1224–1229 (2007)

    Article  CAS  Google Scholar 

  12. J. Dutta, Y. Fan, N. Gupta, G. Fan, C. Gelinas, Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 25, 6800–6816 (2006)

    Article  CAS  Google Scholar 

  13. P.J. Jost, J. Ruland, Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700–2707 (2007)

    Article  CAS  Google Scholar 

  14. J.L. Luo, H. Kamata, M. Karin, The anti-death machinery in IKK/NF-kappaB signaling. J. Clin. Immunol. 25, 541–550 (2005)

    Article  CAS  Google Scholar 

  15. K. Shukla, H. Sonowal, A. Saxena, K.V. Ramana, Didymin by suppressing NF-kappaB activation prevents VEGF-induced angiogenesis in vitro and in vivo. Vascul. Pharmacol. 115, 18–25 (2019)

    Article  CAS  Google Scholar 

  16. S. Wang, Z. Liu, L. Wang, X. Zhang, NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol. 6, 327–334 (2009)

    Article  CAS  Google Scholar 

  17. B. Zhang, Z. Zhang, L. Li, Y.R. Qin, H. Liu, C. Jiang, T.T. Zeng, M.Q. Li, D. Xie, Y. Li, X.Y. Guan, Y.H. Zhu, TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-kappaB signaling. Nat. Commun. 9, 1423 (2018)

    Article  Google Scholar 

  18. T. Tanaka, T. Imamura, M. Yoneda, A. Irie, H. Ogi, M. Nagata, R. Yoshida, D. Fukuma, K. Kawahara, M. Shinohara, H. Nakayama, Enhancement of active MMP release and invasive activity of lymph node metastatic tongue cancer cells by elevated signaling via the TNF-alpha-TNFR1-NF-kappaB pathway and a possible involvement of angiopoietin-like 4 in lung metastasis. Int. J. Oncol. 49, 1377–1384 (2016)

    Article  CAS  Google Scholar 

  19. C.Z. Li, X.J. Jiang, B. Lin, H.J. Hong, S.Y. Zhu, L. Jiang, X.Q. Wang, N.H. Tang, F.F. She, Y.L. Chen, RIP1 regulates TNF-alpha-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-kappaB-VEGF-C pathway. Onco Targets Ther. 11, 2875–2890 (2018)

    Article  Google Scholar 

  20. J. Yuan, P. Li, H. Pan, Y. Li, Q. Xu, T. Xu, X. Ji, Y. Liu, W. Yao, L. Han, C. Ni, miR-542-5p Attenuates fibroblast activation by targeting integrin alpha6 in silica-induced pulmonary fibrosis. Int. J. Mol. Sci. 19, 3717 (2018)

    Article  Google Scholar 

  21. Y. Takada, X. Ye, S. Simon, The integrins. Genome Biol. 8, 215 (2007)

    Article  Google Scholar 

  22. H. Jin, X. Ying, B. Que, X. Wang, Y. Chao, H. Zhang, Z. Yuan, D. Qi, S. Lin, W. Min, M. Yang, W. Ji, N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 47, 195–207 (2019)

    Article  Google Scholar 

  23. D.L. Brooks, L.P. Schwab, R. Krutilina, D.N. Parke, A. Sethuraman, D. Hoogewijs, A. Schorg, L. Gotwald, M. Fan, R.H. Wenger, T.N. Seagroves, ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol. Cancer 15, 26 (2016)

    Article  Google Scholar 

  24. S. Laudato, N. Patil, M.L. Abba, J.H. Leupold, A. Benner, T. Gaiser, A. Marx, H. Allgayer, P53-induced miR-30e-5p inhibits colorectal cancer invasion and metastasis by targeting ITGA6 and ITGB1. Int. J. Cancer 141, 1879–1890 (2017)

    Article  CAS  Google Scholar 

  25. M. Ying, J. Tilghman, Y. Wei, H. Guerrero-Cazares, A. Quinones-Hinojosa, H. Ji, J. Laterra, Kruppel-like factor-9 (KLF9) inhibits glioblastoma stemness through global transcription repression and integrin alpha6 inhibition. J. Biol. Chem. 289, 32742–33256 (2014)

    Article  CAS  Google Scholar 

  26. T. Kinoshita, N. Nohata, T. Hanazawa, N. Kikkawa, N. Yamamoto, H. Yoshino, T. Itesako, H. Enokida, M. Nakagawa, Y. Okamoto, N. Seki, Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin-integrin signalling in head and neck squamous cell carcinoma. Br. J. Cancer 109, 2636–2645 (2013)

    Article  CAS  Google Scholar 

  27. A. Rouzaut, M. Irigoyen, L.M. Montuenga, Lymphangiogenesis and lung cancer. J. Thorac. Oncol. 2, 384–386 (2007)

    Article  Google Scholar 

  28. N.E. Tobler, M. Detmar, Tumor and lymph node lymphangiogenesis–impact on cancer metastasis. J. Leukoc. Biol. 80, 691–696 (2006)

    Article  CAS  Google Scholar 

  29. E.W. Harhaj, V.M. Dixit, Regulation of NF-kappaB by deubiquitinases. Immunol. Rev. 246, 107–124 (2012)

    Article  Google Scholar 

  30. K. Iwai, Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol. 22, 355–364 (2012)

    Article  CAS  Google Scholar 

  31. M. Bednarczyk, H. Stege, S. Grabbe, and M. Bros, beta2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int. J. Mol. Sci. 21, 1402 (2020).

  32. Z. Bojic-Trbojevic, M. Jovanovic Krivokuca, I. Stefanoska, N. Kolundzic, A. Vilotic, T. Kadoya, and L. Vicovac, Integrin beta1 is bound to galectin-1 in human trophoblast. J. Biochem. 163, 39–50 (2018).

  33. H. Li, Y. Wang, S.K. Rong, L. Li, T. Chen, Y.Y. Fan, Y.F. Wang, C.R. Yang, C. Yang, W.C. Cho, J. Yang, Integrin α1 promotes tumorigenicity and progressive capacity of colorectal cancer. Int. J. Biol. Sci. 16, 815–826 (2020)

    Article  CAS  Google Scholar 

  34. H. Sun, F. Lagarrigue, A.R. Gingras, Z. Fan, K. Ley, M.H. Ginsberg, Transmission of integrin beta7 transmembrane domain topology enables gut lymphoid tissue development. J. Cell Biol. 217, 1453–1465 (2018)

    Article  CAS  Google Scholar 

  35. E.J. Gang, H.N. Kim, Y.T. Hsieh, Y. Ruan, H.A. Ogana, S. Lee, J. Pham, H. Geng, E. Park, L. Klemm, C.L. Willman, W.L. Carroll, S.D. Mittelman, E. Orgel, M.J. Oberley, C. Parekh, H. Abdel-Azim, D. Bhojwani, A.S. Wayne, A. De Arcangelis, E. Georges-Labouesse, E. Wayner, H. Bonig, A. Minasyan, J. Ten Hoeve, T.G. Graeber, M. Müschen, N. Heisterkamp, Y.M. Kim, Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia. Blood 136, 210–223 (2020)

    Article  CAS  Google Scholar 

  36. T. Hu, R. Zhou, Y. Zhao, G. Wu, Integrin alpha6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci. Rep. 6, 33376 (2016)

    Article  CAS  Google Scholar 

  37. J. Shen, J. Xu, B. Chen, D. Ma, Z. Chen, J.C. Li, C. Zhu, Elevated integrin alpha6 expression is involved in the occurrence and development of lung adenocarcinoma, and predicts a poor prognosis: a study based on immunohistochemical analysis and bioinformatics. J. Cancer Res. Clin. Oncol. 145, 1681–1693 (2019)

    Article  CAS  Google Scholar 

  38. J. Jandova, C.J. Mason, S.C. Pawar, G.S. Watts, Fn14 receptor promotes invasive potential and metastatic capacity of non-small lung adenocarcinoma cells through the up-regulation of integrin α6. Neoplasma 62, 41–52 (2015)

    Article  CAS  Google Scholar 

  39. Y.L. Hsu, C.Y. Wu, J.Y. Hung, Y.S. Lin, M.S. Huang, P.L. Kuo, Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin alpha6beta4 and Notch1/Jagged2 signaling pathway. Carcinogenesis 34, 1370–1381 (2013)

    Article  CAS  Google Scholar 

  40. W. Chen, X. Zhuang, R. Qi, T. Qiao, MiR-302a-5p suppresses cell proliferation and invasion in non-small cell lung carcinoma by targeting ITGA6. Am. J. Transl. Res. 11, 4348–4357 (2019)

    PubMed  PubMed Central  Google Scholar 

  41. K. Liang, Y. Liu, D. Eer, J. Liu, F. Yang, K. Hu, High CXC Chemokine Ligand 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-kappaB pathway. Med. Sci. Monit. 24, 405–411 (2018)

    Article  CAS  Google Scholar 

  42. L. Xu, Q. Wu, X. Zhou, Q. Wu, and M. Fang, TRIM13 inhibited cell proliferation and induced cell apoptosis by regulating NF-kappaB pathway in non-small-cell lung carcinoma cells. Gene 715, 144015 (2019).

  43. M.C. Weng, M.H. Li, J.G. Chung, Y.C. Liu, J.Y. Wu, F.T. Hsu, and H.E. Wang, Apoptosis induction and AKT/NF-kappaB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomed. Pharmacother. 116, 109032 (2019).

  44. F. Ohtake, Y. Saeki, S. Ishido, J. Kanno, K. Tanaka, The K48–K63 branched ubiquitin chain regulates NF-kappaB signaling. Mol. Cell 64, 251–266 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Taizhou Hospital of Zhejiang University for providing the research environment.

Funding

This study was supported by grants from the National Nature Science Foundation in China (NSFC) (grant number: 82002400), the Natural Science Foundation of Zhejiang Provincial (grant numbers: Y19H160116, Q18H160119) and the Science and Technology Department of Guangdong Province (grant number: 2019A1515110740) and Health Commission of Guangdong Province (A2020100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Sijia Ren, Jinrong Zhu and Jianfei Shen. The first draft of the manuscript was written by Sijia Ren and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinrong Zhu or Jianfei Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The animal experiments were approved by the Ethics Committee of Taizhou Hospital of Zhejiang Province (approval no: tzy-2020160).

Consent to participate and publish

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Wang, J., Xu, A. et al. Integrin α6 overexpression promotes lymphangiogenesis and lymphatic metastasis via activating the NF-κB signaling pathway in lung adenocarcinoma. Cell Oncol. 45, 57–67 (2022). https://doi.org/10.1007/s13402-021-00648-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00648-3

Keywords

Navigation