Skip to main content

Advertisement

Log in

The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury

  • Review
  • Published:
Neurotherapeutics

Abstract

Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diaz-Arrastia R, et al. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma. 2014;31(2):135–58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury - an update. Phys Med Rehabil Clin N Am. 2016;27(2):373–93.

    Article  PubMed  Google Scholar 

  3. Corps KN, Roth TL, McGavern DB. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;72(3):355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Giza C, Greco T, Prins ML. Concussion: pathophysiology and clinical translation. Handb Clin Neurol. 2018;158:51–61.

    Article  PubMed  Google Scholar 

  5. Faden AI, Loane DJ. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics. 2015;12(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  6. LoBue C, et al. Traumatic brain injury and risk of long-term brain changes, accumulation of pathological markers, and developing dementia: a review. J Alzheimers Dis. 2019;70(3):629–54.

    Article  CAS  PubMed  Google Scholar 

  7. Vaishnavi S, Rao V, Fann JR. Neuropsychiatric problems after traumatic brain injury: unraveling the silent epidemic. Psychosomatics. 2009;50(3):198–205.

    Article  PubMed  Google Scholar 

  8. Wilson L, et al. The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 2017;16(10):813–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Capettini LS, et al. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des. 2012;18(7):963–70.

    Article  CAS  PubMed  Google Scholar 

  10. Perrone-Filardi P, et al. Renin-angiotensin-aldosterone system inhibition in patients affected by heart failure: efficacy, mechanistic effects and practical use of sacubitril/valsartan. Position Paper of the Italian Society of Cardiology. Eur J Intern Med. 2022;102:8–16.

    Article  CAS  PubMed  Google Scholar 

  11. Savoia C, et al. Angiotensin II and the vascular phenotype in hypertension. Expert Rev Mol Med. 2011;13: e11.

    Article  PubMed  Google Scholar 

  12. Thone-Reineke C, Steckelings UM, Unger T. Angiotensin receptor blockers and cerebral protection in stroke. J Hypertens Suppl. 2006;24(1):S115–21.

    Article  PubMed  Google Scholar 

  13. Saavedra JM. Angiotensin receptor blockers are not just for hypertension anymore. Physiology (Bethesda). 2021;36(3):160–73.

    CAS  PubMed  Google Scholar 

  14. Baron DH, et al. Renin Angiotensin System as a potential treatment target for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2022;39(7–8):473–86.

    Article  PubMed  Google Scholar 

  15. Wright JW, Kawas LH, Harding JW. A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front Endocrinol (Lausanne). 2013;4:158.

    Article  PubMed  Google Scholar 

  16. Timaru-Kast R, et al. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma*. Crit Care Med. 2012;40(3):935–44.

    Article  CAS  PubMed  Google Scholar 

  17. Villapol S, et al. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 2012;37(13):2817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sparks MA, et al. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Carney EF. Hypertension: New non-RAS peptide modulates the vasoregulatory effects of angiotensin II. Nat Rev Nephrol. 2015;11(6):317.

    Article  PubMed  Google Scholar 

  20. Chopra S, Baby C, Jacob JJ. Neuro-endocrine regulation of blood pressure. Indian J Endocrinol Metab. 2011;15(Suppl 4):S281–8.

    PubMed  PubMed Central  Google Scholar 

  21. Lin S, et al. Role of the ACE2Ang(17)Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review). Mol Med Rep. 2017;16(4):4403–12.

    Article  CAS  PubMed  Google Scholar 

  22. Padda RS, et al. Angiotensin-(1–7): a novel peptide to treat hypertension and nephropathy in diabetes? J Diabetes Metab. 2015;6(10).

  23. Xu P, Sriramula S, Lazartigues E. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol. 2011;300(4):R804–17.

    Article  CAS  PubMed  Google Scholar 

  24. Gebre AK, et al. Targeting renin-angiotensin system against Alzheimer’s disease. Front Pharmacol. 2018;9:440.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu J, et al. The ACE2/angiotensin-(1–7)/mas receptor axis: pleiotropic roles in cancer. Front Physiol. 2017;8:276.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803.

    Article  CAS  PubMed  Google Scholar 

  27. Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu Rev Pharmacol Toxicol. 2010;50:439–65.

    Article  CAS  PubMed  Google Scholar 

  28. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol. 2002;89(2A):3A-9A; discussion 10A.

    Article  CAS  PubMed  Google Scholar 

  29. Halbach O, von Bohlen und Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326(2):599–616.

    Article  Google Scholar 

  30. Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther. 2021;218:107684.

    Article  CAS  PubMed  Google Scholar 

  31. Lenkei Z, et al. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997;18(4):383–439.

    Article  CAS  PubMed  Google Scholar 

  32. Zhuo J, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens. 1998;16(12 Pt 2):2027–37.

    Article  CAS  PubMed  Google Scholar 

  33. Sernia C. Location and secretion of brain angiotensinogen. Regul Pept. 1995;57(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  34. Stornetta RL, et al. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242(4884):1444–6.

    Article  CAS  PubMed  Google Scholar 

  35. Lippoldt A, et al. Cellular localization of angiotensin type 1 receptor and angiotensinogen mRNAs in the subfornical organ of the rat brain. Neurosci Lett. 1993;150(2):153–8.

    Article  CAS  PubMed  Google Scholar 

  36. Imboden H, et al. Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia. Regul Pept. 2009;154(1–3):23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patil J, et al. Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. Regul Pept. 2010;162(1–3):90–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wright JW, Harding JW. Brain renin-angiotensin–a new look at an old system. Prog Neurobiol. 2011;95(1):49–67.

    Article  CAS  PubMed  Google Scholar 

  39. Moffett RB, Bumpus FM, Husain A. Cellular organization of the brain renin-angiotensin system. Life Sci. 1987;41(16):1867–79.

    Article  CAS  PubMed  Google Scholar 

  40. Lavoie JL, et al. Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual-reporter transgenic model. Hypertension. 2004;43(5):1116–9.

    Article  CAS  PubMed  Google Scholar 

  41. Lewicki JA, Fallon JH, Printz MP. Regional distribution of angiotensinogen in rat brain. Brain Res. 1978;158(2):359–71.

    Article  CAS  PubMed  Google Scholar 

  42. Ganten D, et al. Renin in dog brain. Am J Physiol. 1971;221(6):1733–7.

    Article  CAS  PubMed  Google Scholar 

  43. Lavoie JL, et al. Evidence supporting a functional role for intracellular renin in the brain. Hypertension. 2006;47(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kiprov D, et al. Renin activity in the brain, the kidneys and the peripheral plasma or rats with different experimental models of hypertension. Cor Vasa. 1977;19(4–5):346–54.

    CAS  PubMed  Google Scholar 

  45. Day RP, Reid IA. Renin activity in dog brain: enzymological similarity to cathepsin D. Endocrinology. 1976;99(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  46. Lee-Kirsch MA, et al. Distinct renin isoforms generated by tissue-specific transcription initiation and alternative splicing. Circ Res. 1999;84(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  47. Sigmund CD, Diz DI, Chappell MC. No brain renin-angiotensin system: deja vu all over again? Hypertension. 2017;69(6):1007–10.

    Article  CAS  PubMed  Google Scholar 

  48. van Thiel BS, et al. Brain renin-angiotensin system: does it exist? Hypertension. 2017;69(6):1136–44.

    Article  PubMed  Google Scholar 

  49. Yanagisawa K, et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene. 1998;17(13):1743–7.

    Article  CAS  PubMed  Google Scholar 

  50. Cruz-Lopez EO, Uijl E, Danser AHJ. Fifty years of research on the brain renin-angiotensin system: what have we learned? Clin Sci (Lond). 2021;135(14):1727–31.

    Article  CAS  PubMed  Google Scholar 

  51. Dong YF, et al. Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension. 2011;58(4):635–42.

    Article  CAS  PubMed  Google Scholar 

  52. Lavoie JL, et al. Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiol Genomics. 2004;16(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  53. Slater EE, Defendini R, Zimmerman EA. Wide distribution of immunoreactive renin in nerve cells of human brain. Proc Natl Acad Sci U S A. 1980;77(9):5458–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hermann K, et al. Presence of renin in primary neuronal and glial cells from rat brain. Brain Res. 1987;437(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  55. Grobe JL, Xu D, Sigmund CD. An intracellular renin-angiotensin system in neurons: fact, hypothesis, or fantasy. Physiology (Bethesda). 2008;23:187–93.

    CAS  PubMed  Google Scholar 

  56. Suzuki F, et al. Human prorenin has “gate and handle” regions for its non-proteolytic activation. J Biol Chem. 2003;278(25):22217–22.

    Article  CAS  PubMed  Google Scholar 

  57. Nguyen G, et al. Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest. 2002;109(11):1417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li W, et al. The prorenin and (pro)renin receptor: new players in the brain renin-angiotensin system? Int J Hypertens. 2012;2012: 290635.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Takahashi K, et al. Expression of (pro)renin receptor in the human brain and pituitary, and co-localisation with arginine vasopressin and oxytocin in the hypothalamus. J Neuroendocrinol. 2010;22(5):453–9.

    Article  CAS  PubMed  Google Scholar 

  60. Shan Z, et al. Characterization of a functional (pro)renin receptor in rat brain neurons. Exp Physiol. 2008;93(5):701–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ichihara A, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest. 2004;114(8):1128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Timaru-Kast R, et al. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS ONE. 2012;7(8):e43829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu T, et al. Prorenin stimulates a pro-angiogenic and pro-inflammatory response in retinal endothelial cells and an M1 phenotype in retinal microglia. Clin Exp Pharmacol Physiol. 2015;42(5):537–48.

    Article  CAS  PubMed  Google Scholar 

  64. Coles JP. Regional ischemia after head injury. Curr Opin Crit Care. 2004;10(2):120–5.

    Article  PubMed  Google Scholar 

  65. Schroder ML, et al. Regional cerebral blood volume after severe head injury in patients with regional cerebral ischemia. Neurosurgery. 1998;42(6):1276–80; discussion 1280–1.

    Article  CAS  PubMed  Google Scholar 

  66. DeWitt DS, Prough DS. Ameliorating cerebral hypoperfusion after traumatic brain injury. Crit Care Med. 1999;27(11):2592–3.

    Article  CAS  PubMed  Google Scholar 

  67. Jackson L, et al. Within the brain: the renin angiotensin system. Int J Mol Sci. 2018;19(3).

  68. Strittmatter SM, et al. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc Natl Acad Sci U S A. 1984;81(5):1599–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Whiting P, et al. Expression of angiotensin converting enzyme mRNA in rat brain. Brain Res Mol Brain Res. 1991;11(1):93–6.

    Article  CAS  PubMed  Google Scholar 

  70. McKinley MJ, et al. The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 2003;35(6):901–18.

    Article  CAS  PubMed  Google Scholar 

  71. Bernstein KE, et al. Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE). Curr Opin Pharmacol. 2011;11(2):105–11.

    Article  CAS  PubMed  Google Scholar 

  72. Santiago TC, et al. Angiotensin-converting enzymes as druggable features of psychiatric and neurodegenerative disorders. J Neurochem. 2023.

  73. Trieu BH, et al. Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science. 2022;375(6585):1177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology. 1985;40(1):2–24.

    Article  CAS  PubMed  Google Scholar 

  75. Fuxe K, et al. Immunohistochemical evidence for the existence of angiotensin II-containing nerve terminals in the brain and spinal cord in the rat. Neurosci Lett. 1976;2(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  76. Lind RW, Swanson LW, Ganten D. Angiotensin II immunoreactivity in the neural afferents and efferents of the subfornical organ of the rat. Brain Res. 1984;321(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  77. de Kloet AD, et al. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R444–58.

    Article  PubMed  PubMed Central  Google Scholar 

  78. de Kloet AD, et al. A unique, “angiotensin-sensitive” neuronal population coordinates neuroendocrine, cardiovascular, and behavioral responses to stress. J Neurosci. 2017;37(13):3478–90.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wright JW, Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev. 1994;18(1):21–53.

    Article  CAS  PubMed  Google Scholar 

  80. von Bohlen und Halbach O, Albrecht D. Angiotensin II inhibits long-term potentiation within the lateral nucleus of the amygdala through AT1 receptors. Peptides. 1998;19(6):1031–6.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou J, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37(5):1271–6.

    Article  CAS  PubMed  Google Scholar 

  82. Herrera M, et al. Lack of specificity of commercial antibodies leads to misidentification of angiotensin type 1 receptor protein. Hypertension. 2013;61(1):253–8.

    Article  CAS  PubMed  Google Scholar 

  83. MacTaggart TE, et al. Mouse angiotensin receptor genes Agtr1a and Agtr1b map to chromosomes 13 and 3. Mamm Genome. 1997;8(4):294–5.

    Article  CAS  PubMed  Google Scholar 

  84. van Esch JH, et al. Cardiac phenotype and angiotensin II levels in AT1a, AT1b, and AT2 receptor single, double, and triple knockouts. Cardiovasc Res. 2010;86(3):401–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yamasaki E, et al. Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. Am J Physiol Heart Circ Physiol. 2020;318(2):H461–9.

    Article  CAS  PubMed  Google Scholar 

  86. Higuchi S, et al. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond). 2007;112(8):417–28.

    Article  CAS  PubMed  Google Scholar 

  87. Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol. 2016;310(2):H137–52.

    Article  PubMed  Google Scholar 

  88. Forrester SJ, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murphy TJ, et al. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351(6323):233–6.

    Article  CAS  PubMed  Google Scholar 

  90. Sasaki K, et al. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991;351(6323):230–3.

    Article  CAS  PubMed  Google Scholar 

  91. Schmitz U, Berk BC. Angiotensin II signal transduction: Stimulation of multiple mitogen-activated protein kinase pathways. Trends Endocrinol Metab. 1997;8(7):261–6.

    Article  CAS  PubMed  Google Scholar 

  92. Kanaide H, et al. Cellular mechanism of vasoconstriction induced by angiotensin II: it remains to be determined. Circ Res. 2003;93(11):1015–7.

    Article  CAS  PubMed  Google Scholar 

  93. Marvar PJ, et al. The central nervous system and inflammation in hypertension. Curr Opin Pharmacol. 2011;11(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  94. Saavedra JM, Benicky J. Brain and peripheral angiotensin II play a major role in stress. Stress. 2007;10(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  95. Paulson OB, Waldemar G. Role of the local renin-angiotensin system in the autoregulation of the cerebral circulation. Blood Vessels. 1991;28(1–3):231–5.

    CAS  PubMed  Google Scholar 

  96. Saavedra JM, Ito T, Nishimura Y. Review: The role of angiotensin II AT1-receptors in the regulation of the cerebral blood flow and brain ischaemia. J Renin Angiotensin Aldosterone Syst. 2001;2(1_suppl):S102–9.

    Article  CAS  PubMed  Google Scholar 

  97. Phillips MI, de Oliveira EM. Brain renin angiotensin in disease. J Mol Med. 2008;86(6):715–22.

    Article  CAS  PubMed  Google Scholar 

  98. Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke. 2000;31(10):2478–86.

    Article  CAS  PubMed  Google Scholar 

  99. Saavedra JM. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol. 2012;32(5):667–81.

    Article  CAS  PubMed  Google Scholar 

  100. Saavedra JM, Benicky J, Zhou J. Mechanisms of the anti-ischemic effect of angiotensin II AT(1) receptor antagonists in the brain. Cell Mol Neurobiol. 2006;26(7–8):1099–111.

    CAS  PubMed  Google Scholar 

  101. Zhou J, et al. Temporal changes in cortical and hippocampal expression of genes important for brain glucose metabolism following controlled cortical impact injury in mice. Front Endocrinol (Lausanne). 2017;8:231.

    Article  PubMed  Google Scholar 

  102. Zahradka P, et al. NF-kappaB activation is essential for angiotensin II-dependent proliferation and migration of vascular smooth muscle cells. J Mol Cell Cardiol. 2002;34(12):1609–21.

    Article  CAS  PubMed  Google Scholar 

  103. Didion SP, Faraci FM. Angiotensin II produces superoxide-mediated impairment of endothelial function in cerebral arterioles. Stroke. 2003;34(8):2038–42.

    Article  CAS  PubMed  Google Scholar 

  104. Chillon JM, Baumbach GL. Effects of an angiotensin-converting enzyme inhibitor and a beta-blocker on cerebral arterioles in rats. Hypertension. 1999;33(3):856–61.

    Article  PubMed  Google Scholar 

  105. Fan LM, et al. Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. J Clin Invest. 2019;129(8):3374–86.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Singh KD, Karnik SS. Angiotensin receptors: structure, function, signaling and clinical applications. J Cell Signal. 2016;1(2).

  107. Sumners C, Souza Silva IM, Steckelings UM. Angiotensin receptors - affinitiy and beyond. Clin Sci (Lond). 2022;136(10):799–802.

    Article  PubMed  Google Scholar 

  108. Sumners C, et al. Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertens Res. 2020;43(4):281–95.

    Article  CAS  PubMed  Google Scholar 

  109. Matavelli LC, Siragy HM. AT2 receptor activities and pathophysiological implications. J Cardiovasc Pharmacol. 2015;65(3):226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Steckelings UM, et al. The angiotensin AT(2) receptor: from a binding site to a novel therapeutic target. Pharmacol Rev. 2022;74(4):1051–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hafko R, et al. Commercially available angiotensin II At(2) receptor antibodies are nonspecific. PLoS ONE. 2013;8(7):e69234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. de Kloet AD, Steckelings UM, Sumners C. Protective angiotensin type 2 receptors in the brain and hypertension. Curr Hypertens Rep. 2017;19(6):46.

    Article  PubMed  PubMed Central  Google Scholar 

  113. de Kloet AD, et al. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Struct Funct. 2016;221(2):891–912.

    Article  PubMed  Google Scholar 

  114. Lenkei Z, et al. Distribution of angiotensin II type-2 receptor (AT2) mRNA expression in the adult rat brain. J Comp Neurol. 1996;373(3):322–39.

    Article  CAS  PubMed  Google Scholar 

  115. Sumners C, et al. Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol. 2013;40(8):580–8.

    Article  CAS  PubMed  Google Scholar 

  116. Wang Y, et al. Anti-fibrotic potential of AT(2) receptor agonists. Front Pharmacol. 2017;8:564.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mateos L, Perez-Alvarez MJ, Wandosell F. Angiotensin II type-2 receptor stimulation induces neuronal VEGF synthesis after cerebral ischemia. Biochim Biophys Acta. 2016;1862(7):1297–308.

    Article  CAS  PubMed  Google Scholar 

  118. Song K, et al. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol. 1992;316(4):467–84.

    Article  CAS  PubMed  Google Scholar 

  119. Okuyama S, et al. Anxiety-like behavior in mice lacking the angiotensin II type-2 receptor. Brain Res. 1999;821(1):150–9.

    Article  CAS  PubMed  Google Scholar 

  120. Namsolleck P, et al. AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep. 2014;16(2):416.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bennion DM, Steckelings UM, Sumners C. Neuroprotection via AT(2) receptor agonists in ischemic stroke. Clin Sci (Lond). 2018;132(10):1055–67.

    Article  CAS  PubMed  Google Scholar 

  122. McCarthy CA, et al. Angiotensin AT2 receptor stimulation causes neuroprotection in a conscious rat model of stroke. Stroke. 2009;40(4):1482–9.

    Article  CAS  PubMed  Google Scholar 

  123. Karnik SS, et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli [corrected]. Pharmacol Rev. 2015;67(4):754–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schwengel K, et al. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice. J Mol Med (Berl). 2016;94(8):957–66.

    Article  CAS  PubMed  Google Scholar 

  125. Zisman LS, et al. Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation. 2003;108(14):1707–12.

    Article  CAS  PubMed  Google Scholar 

  126. Vickers C, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.

    Article  CAS  PubMed  Google Scholar 

  127. Rice GI, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J. 2004;383(Pt 1):45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ferrario CM, et al. Effects of renin-angiotensin system blockade on renal angiotensin-(1–7) forming enzymes and receptors. Kidney Int. 2005;68(5):2189–96.

    Article  CAS  PubMed  Google Scholar 

  129. Santos RA, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teixeira LB, et al. Ang-(1–7) is an endogenous beta-arrestin-biased agonist of the AT(1) receptor with protective action in cardiac hypertrophy. Sci Rep. 2017;7(1):11903.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tetzner A, et al. G-protein-coupled receptor MrgD is a receptor for angiotensin-(1–7) involving adenylyl cyclase, cAMP, and phosphokinase A. Hypertension. 2016;68(1):185–94.

    Article  CAS  PubMed  Google Scholar 

  132. Leonhardt J, et al. Evidence for heterodimerization and functional interaction of the angiotensin type 2 receptor and the receptor MAS. Hypertension. 2017;69(6):1128–35.

    Article  CAS  PubMed  Google Scholar 

  133. Domenig O, et al. Neprilysin is a mediator of alternative renin-angiotensin-system activation in the murine and human kidney. Sci Rep. 2016;6:33678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sampaio WO, et al. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–92.

    Article  CAS  PubMed  Google Scholar 

  135. Umschweif G, et al. Neuroprotection after traumatic brain injury in heat-acclimated mice involves induced neurogenesis and activation of angiotensin receptor type 2 signaling. J Cereb Blood Flow Metab. 2014.

  136. da Silveira KD, et al. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol. 2010;185(9):5569–76.

    Article  PubMed  Google Scholar 

  137. Chappell MC. Therapeutic approaches to the alternative angiotensin-(1–7) axis of the renin-angiotensin system. Ann Pharmacol Pharm. 2017;2(11).

  138. Su Z, Zimpelmann J, Burns KD. Angiotensin-(1–7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 2006;69(12):2212–8.

    Article  CAS  PubMed  Google Scholar 

  139. Iyer SN, et al. Evidence that prostaglandins mediate the antihypertensive actions of angiotensin-(1–7) during chronic blockade of the renin-angiotensin system. J Cardiovasc Pharmacol. 2000;36(1):109–17.

    Article  CAS  PubMed  Google Scholar 

  140. Shi Y, et al. Angiotensin-(1–7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci (Lond). 2015;128(10):649–63.

    Article  CAS  PubMed  Google Scholar 

  141. Toth AD, et al. Novel mechanisms of G-protein-coupled receptors functions: AT(1) angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab. 2018;32(2):69–82.

    Article  CAS  PubMed  Google Scholar 

  142. Costa-Besada MA, et al. Paracrine and intracrine angiotensin 1–7/Mas receptor axis in the substantia nigra of rodents, monkeys, and humans. Mol Neurobiol. 2018;55(7):5847–67.

    Article  CAS  PubMed  Google Scholar 

  143. Donoghue M, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87(5):E1-9.

    Article  CAS  PubMed  Google Scholar 

  144. Hoffmann M, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol. 2013;304(11):C1073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pena Silva RA, et al. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke. 2012;43(12):3358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jiang T, et al. Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol. 2014;171(18):4222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Freund M, Walther T, von Bohlen und Halbach O. Immunohistochemical localization of the angiotensin-(1–7) receptor Mas in the murine forebrain. Cell Tissue Res. 2012;348(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  149. Regenhardt RW, et al. Anti-inflammatory effects of angiotensin-(1–7) in ischemic stroke. Neuropharmacology. 2013;71:154–63.

    Article  CAS  PubMed  Google Scholar 

  150. Moore ED, et al. Angiotensin-(1–7) prevents radiation-induced inflammation in rat primary astrocytes through regulation of MAP kinase signaling. Free Radic Biol Med. 2013;65:1060–8.

    Article  CAS  PubMed  Google Scholar 

  151. Albiston AL, et al. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab. 2003;14(2):72–7.

    Article  CAS  PubMed  Google Scholar 

  152. Fernando RN, Albiston AL, Chai SY. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus–potential role in modulation of glucose uptake in neurones? Eur J Neurosci. 2008;28(3):588–98.

    Article  PubMed  Google Scholar 

  153. Fernando RN, et al. Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J Neurochem. 2007;102(3):967–76.

    Article  CAS  PubMed  Google Scholar 

  154. Lew RA, et al. Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem. 2003;86(2):344–50.

    Article  CAS  PubMed  Google Scholar 

  155. Farag E, et al. The renin angiotensin system and the brain: New developments. J Clin Neurosci. 2017;46:1–8.

    Article  CAS  PubMed  Google Scholar 

  156. Albiston AL, et al. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br J Pharmacol. 2011;164(1):37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wright JW, Harding JW. Important role for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev. 1997;25(1):96–124.

    Article  CAS  PubMed  Google Scholar 

  158. Kramar EA, Harding JW, Wright JW. Angiotensin II- and IV-induced changes in cerebral blood flow. Roles of AT1, AT2, and AT4 receptor subtypes. Regul Pept. 1997;68(2):131–8.

    Article  CAS  PubMed  Google Scholar 

  159. Benoist CC, et al. The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-met system. J Pharmacol Exp Ther. 2014;351(2):390–402.

    Article  PubMed  PubMed Central  Google Scholar 

  160. De Bundel D, et al. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther. 2008;14(4):315–39.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wright JW, Harding JW. The angiotensin AT4 receptor subtype as a target for the treatment of memory dysfunction associated with Alzheimer’s disease. J Renin Angiotensin Aldosterone Syst. 2008;9(4):226–37.

    Article  CAS  PubMed  Google Scholar 

  162. Kramár EA, et al. The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res. 2001;897(1–2):114–21.

    Article  PubMed  Google Scholar 

  163. Faure S, et al. Cerebroprotective effect of angiotensin IV in experimental ischemic stroke in the rat mediated by AT(4) receptors. J Physiol Pharmacol. 2006;57(3):329–42.

    CAS  PubMed  Google Scholar 

  164. Royea J, Martinot P, Hamel E. Memory and cerebrovascular deficits recovered following angiotensin IV intervention in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2020;134:104644.

    Article  CAS  PubMed  Google Scholar 

  165. Hilliard LM, et al. The “his and hers” of the renin-angiotensin system. Curr Hypertens Rep. 2013;15(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  166. Parrish JN, et al. Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl Psychiatry. 2019;9(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Maric-Bilkan C, Manigrasso MB. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend Med. 2012;9(4):287–91.

    Article  PubMed  Google Scholar 

  168. Xue B, et al. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am J Physiol Heart Circ Physiol. 2014;307(2):H191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dean SA, et al. 17beta-estradiol downregulates tissue angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R759–66.

    Article  CAS  PubMed  Google Scholar 

  170. O’Donnell E, Floras JS, Harvey PJ. Estrogen status and the renin angiotensin aldosterone system. Am J Physiol Regul Integr Comp Physiol. 2014;307(5):R498-500.

    Article  CAS  PubMed  Google Scholar 

  171. Seltzer A, et al. Estrogens regulate angiotensin-converting enzyme and angiotensin receptors in female rat anterior pituitary. Neuroendocrinology. 1992;55(4):460–7.

    Article  CAS  PubMed  Google Scholar 

  172. Komukai K, Mochizuki S, Yoshimura M. Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 2010;24(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  173. Medina D, Mehay D, Arnold AC. Sex differences in cardiovascular actions of the renin-angiotensin system. Clin Auton Res. 2020;30(5):393–408.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Joyner J, et al. Temporal-spatial expression of ANG-(1–7) and angiotensin-converting enzyme 2 in the kidney of normal and hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R169–77.

    Article  CAS  PubMed  Google Scholar 

  175. da Silva JS, et al. Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. J Renin Angiotensin Aldosterone Syst. 2017;18(3):1470320317722270.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gersh FL, et al. The renin-angiotensin-aldosterone system in postmenopausal women: the promise of hormone therapy. Mayo Clin Proc. 2021;96(12):3130–41.

    Article  CAS  PubMed  Google Scholar 

  177. Villapol S, Loane DJ, Burns MP. Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia. 2017;65(9):1423–38.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Taylor AA, Siragy H, Nesbitt S. Angiotensin receptor blockers: pharmacology, efficacy, and safety. J Clin Hypertens (Greenwich). 2011;13(9):677–86.

    Article  CAS  PubMed  Google Scholar 

  179. Chen R, et al. Comparative first-line effectiveness and safety of ACE (angiotensin-converting enzyme) inhibitors and angiotensin receptor blockers: a multinational cohort study. Hypertension. 2021;78(3):591–603.

    Article  CAS  PubMed  Google Scholar 

  180. Michel MC, et al. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65(2):809–48.

    Article  PubMed  Google Scholar 

  181. Imaizumi S, et al. Class- and molecule-specific differential effects of angiotensin II type 1 receptor blockers. Curr Pharm Des. 2013;19(17):3002–8.

    Article  CAS  PubMed  Google Scholar 

  182. Lee HY, Oh BH. fimasartan: a new angiotensin receptor blocker. Drugs. 2016;76(10):1015–22.

    Article  CAS  PubMed  Google Scholar 

  183. Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens. 2000;14(Suppl 1):S73-86.

    Article  CAS  PubMed  Google Scholar 

  184. Miura S, et al. Differential bonding interactions of inverse agonists of angiotensin II type 1 receptor in stabilizing the inactive state. Mol Endocrinol. 2008;22(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  185. Glodzik L, Santisteban MM. Blood-brain barrier crossing renin-angiotensin system drugs: considerations for dementia and cognitive decline. Hypertension. 2021;78(3):644–6.

    Article  CAS  PubMed  Google Scholar 

  186. Shao J, et al. Receptor-independent intracellular radical scavenging activity of an angiotensin II receptor blocker. J Hypertens. 2007;25(8):1643–9.

    Article  CAS  PubMed  Google Scholar 

  187. Kurtz TW, Pravenec M. Molecule-specific effects of angiotensin II-receptor blockers independent of the renin-angiotensin system. Am J Hypertens. 2008;21(8):852–9.

    Article  CAS  PubMed  Google Scholar 

  188. Noda A, et al. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques. Nucl Med Biol. 2012;39(8):1232–5.

    Article  CAS  PubMed  Google Scholar 

  189. Fatima N, Patel S, Hussain T. Angiotensin AT2 receptor is anti-inflammatory and reno-protective in lipopolysaccharide mice model: role of IL-10. Front Pharmacol. 2021;12:600163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ito T, Nishimura Y, Saavedra J. Pre-treatment with candesartan protects from cerebral ischaemia. J Renin Angiotensin Aldosterone Syst. 2001;2(3):174–9.

    Article  CAS  PubMed  Google Scholar 

  191. Nishimura Y, et al. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res. 2000;871(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  192. Pelisch N, et al. Systemic candesartan reduces brain angiotensin II via downregulation of brain renin-angiotensin system. Hypertens Res. 2010;33(2):161–4.

    Article  CAS  PubMed  Google Scholar 

  193. Ho JK, et al. Blood-brain barrier crossing renin-angiotensin drugs and cognition in the elderly: a meta-analysis. Hypertension. 2021;78(3):629–43.

    Article  CAS  PubMed  Google Scholar 

  194. Ouk M, et al. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: the importance of blood-brain barrier penetration and APOE ε4 carrier status. Alzheimers Res Ther. 2021;13(1):43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lee HW, et al. Neuroprotective effect of angiotensin II receptor blockers on the risk of incident Alzheimer’s disease: a nationwide population-based cohort study. Front Aging Neurosci. 2023;15:1137197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sica DA. Angiotensin receptor blockers: new considerations in their mechanism of action. J Clin Hypertens (Greenwich). 2006;8(5):381–5.

    Article  CAS  PubMed  Google Scholar 

  197. Klein N, et al. Angiotensin-(1–7) protects from experimental acute lung injury. Crit Care Med. 2013;41(11):e334–43.

    Article  CAS  PubMed  Google Scholar 

  198. McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal. 2020;76:109809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Benson SC, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension. 2004;43(5):993–1002.

    Article  CAS  PubMed  Google Scholar 

  200. Erbe DV, et al. Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists. Vascul Pharmacol. 2006;45(3):154–62.

    Article  CAS  PubMed  Google Scholar 

  201. Villapol S, et al. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138(Pt 11):3299–315.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Ernsberger P, Koletsky RJ. Metabolic actions of angiotensin receptor antagonists: PPAR-gamma agonist actions or a class effect? Curr Opin Pharmacol. 2007;7(2):140–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gillespie W, Tyagi N, Tyagi SC. Role of PPARgamma, a nuclear hormone receptor in neuroprotection. Indian J Biochem Biophys. 2011;48(2):73–81.

    CAS  PubMed  Google Scholar 

  204. Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens. 2015;28(3):289–99.

    Article  CAS  PubMed  Google Scholar 

  205. Xu Y, et al. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKbeta-dependent AMPK activation. Brain Behav Immun. 2015;50:298–313.

    Article  CAS  PubMed  Google Scholar 

  206. He H, et al. Telmisartan prevents weight gain and obesity through activation of peroxisome proliferator-activated receptor-delta-dependent pathways. Hypertension. 2010;55(4):869–79.

    Article  CAS  PubMed  Google Scholar 

  207. Attilio PJ, et al. Transcriptomic analysis of mouse brain after traumatic brain injury reveals that the angiotensin receptor blocker candesartan acts through novel pathways. Front Neurosci. 2021;15:636259.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Hajmohammadi M, et al. The effect of candesartan alone and its combination with estrogen on post-traumatic brain injury outcomes in female rats. Front Neurosci. 2019;13:1043.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Harford-Wright E, Thornton E, Vink R. Angiotensin-converting enzyme (ACE) inhibitors exacerbate histological damage and motor deficits after experimental traumatic brain injury. Neurosci Lett. 2010;481(1):26–9.

    Article  CAS  PubMed  Google Scholar 

  210. Janatpour ZC, et al. Subcutaneous administration of angiotensin-(1–7) improves recovery after traumatic brain injury in mice. J Neurotrauma. 2019;36(22):3115–31.

    Article  PubMed  Google Scholar 

  211. Timaru-Kast R, et al. Angiotensin ii receptor 1 blockage limits brain damage and improves functional outcome after brain injury in aged animals despite age-dependent reduction in AT1 expression. Front Aging Neurosci. 2019;11:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hacke W, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

  213. Khaksari M, et al. Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury? Iran J Basic Med Sci. 2018;21(6):615–20.

    PubMed  PubMed Central  Google Scholar 

  214. Xiong J, et al. Losartan treatment could improve the outcome of TBI mice. Front Neurol. 2020;11:992.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Yang L, et al. Angiotensin II type 1 receptor deficiency protects against the impairment of blood-brain barrier in a mouse model of traumatic brain injury. Int J Neurosci. 2022: 1–8.

  216. Simon DW, et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–91.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Loane DJ, Byrnes KR. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7(4):366–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Prabhakar NK, et al. Intervention of neuroinflammation in the traumatic brain injury trajectory: in vivo and clinical approaches. Int Immunopharmacol. 2022;108:108902.

    Article  CAS  PubMed  Google Scholar 

  219. Preobrazhenskii DV, Sidorenko BA. Adverse effects of angiotensin II type 1 receptor blockers. Kardiologiia. 2002;42(3):88–94.

    CAS  PubMed  Google Scholar 

  220. Deng Z, et al. Angiotensin receptor blockers are associated with a lower risk of progression from mild cognitive impairment to dementia. Hypertension. 2022;79(10):2159–69.

    Article  CAS  PubMed  Google Scholar 

  221. Alam A, et al. Cellular infiltration in traumatic brain injury. J Neuroinflammation. 2020;17(1):328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kigerl KA, et al. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Okuma Y, Date I, Nishibori M. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Yakugaku Zasshi. 2014;134(6):701–5.

    Article  CAS  PubMed  Google Scholar 

  224. Liu K, et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 2007;21(14):3904–16.

    Article  CAS  PubMed  Google Scholar 

  225. Parker TM, et al. The danger zone: systematic review of the role of HMGB1 danger signalling in traumatic brain injury. Brain Inj. 2017;31(1):2–8.

    Article  PubMed  Google Scholar 

  226. Okuma Y, et al. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72(3):373–84.

    Article  CAS  PubMed  Google Scholar 

  227. Richard SA, et al. High Mobility Group Box 1 and Traumatic Brain Injury. J Behav Brain Sci. 2017;7(2):50–61.

    Article  CAS  Google Scholar 

  228. Klune JR, et al. HMGB1: endogenous danger signaling. Mol Med. 2008;14(7–8):476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kikuchi K, et al. Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. Int J Mol Sci. 2013;14(9):18899–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Saavedra JM, Benicky J, Zhou J. Angiotensin II: multitasking in the brain. J Hypertens Suppl. 2006;24(1):S131–7.

    Article  CAS  PubMed  Google Scholar 

  231. Walther T, et al. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J. 2002;16(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  232. Saavedra JM. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond). 2012;123(10):567–90.

    Article  CAS  PubMed  Google Scholar 

  233. Savoia C, Schiffrin EL. Inflammation in hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):152–8.

    CAS  PubMed  Google Scholar 

  234. Kono S, et al. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(3):537–47.

    Article  PubMed  Google Scholar 

  235. Bernardo A, Minghetti L. PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des. 2006;12(1):93–109.

    Article  CAS  PubMed  Google Scholar 

  236. Larrayoz IM, et al. Candesartan reduces the innate immune response to lipopolysaccharide in human monocytes. J Hypertens. 2009;27(12):2365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pang T, et al. Telmisartan ameliorates lipopolysaccharide-induced innate immune response through peroxisome proliferator-activated receptor-gamma activation in human monocytes. J Hypertens. 2012;30(1):87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yi JH, et al. PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res. 2008;1244:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Deng Y, et al. Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARgamma/NF-kappaB/IL-6 signaling pathway. Genes Dis. 2020;7(2):253–65.

    Article  CAS  PubMed  Google Scholar 

  240. Griendling KK, et al. Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension. 1997;29(1 Pt 2):366–73.

    Article  CAS  PubMed  Google Scholar 

  241. Pueyo ME, Michel JB. Angiotensin II receptors in endothelial cells. Gen Pharmacol. 1997;29(5):691–6.

    Article  CAS  PubMed  Google Scholar 

  242. Lee JM, et al. Brain tissue responses to ischemia. J Clin Invest. 2000;106(6):723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang J, et al. Traumatic brain injury-associated coagulopathy. J Neurotrauma. 2012;29(17):2597–605.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Senchenkova EY, et al. Angiotensin II-mediated microvascular thrombosis. Hypertension. 2010;56(6):1089–95.

    Article  CAS  PubMed  Google Scholar 

  245. Moriwaki H, et al. Losartan, an angiotensin II (AT1) receptor antagonist, preserves cerebral blood flow in hypertensive patients with a history of stroke. J Hum Hypertens. 2004;18(10):693–9.

    Article  CAS  PubMed  Google Scholar 

  246. Matsumoto S, et al. The angiotensin II type 1 receptor antagonist olmesartan preserves cerebral blood flow and cerebrovascular reserve capacity, and accelerates rehabilitative outcomes in hypertensive patients with a history of stroke. Int J Neurosci. 2010;120(5):372–80.

    Article  CAS  PubMed  Google Scholar 

  247. Veenith TV, et al. Pathophysiologic mechanisms of cerebral ischemia and diffusion hypoxia in traumatic brain injury. JAMA Neurol. 2016;73(5):542–50.

    Article  PubMed  Google Scholar 

  248. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab. 2017;37(7):2320–39.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Logsdon AF, et al. Role of microvascular disruption in brain damage from traumatic brain injury. Compr Physiol. 2015;5(3):1147–60.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Guan W, et al. Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS ONE. 2011;6(9):e24551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Alhusban A, et al. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther. 2013;344(2):348–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Kozak A, et al. Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke. 2009;40(5):1870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Soliman S, et al. Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A and B. J Pharmacol Exp Ther. 2014;349(3):444–57.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Han C, et al. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis. 2010;212(1):206–12.

    Article  CAS  PubMed  Google Scholar 

  256. Benicky J, et al. Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery. Cell Mol Neurobiol. 2009;29(6–7):781–92.

    Article  CAS  PubMed  Google Scholar 

  257. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Nguyen Dinh Cat A, et al. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal. 2013;19(10):1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Alvarez A, et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood. 2004;104(2):402–8.

    Article  CAS  PubMed  Google Scholar 

  260. Bisht M, Dhasmana DC, Bist SS. Angiogenesis: future of pharmacological modulation. Indian J Pharmacol. 2010;42(1):2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ando H, et al. Angiotensin II AT1 receptor blockade decreases brain artery inflammation in a stress-prone rat strain. Ann N Y Acad Sci. 2004;1018:345–50.

    Article  CAS  PubMed  Google Scholar 

  262. Yamakawa H, et al. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab. 2003;23(3):371–80.

    Article  CAS  PubMed  Google Scholar 

  263. Amyot F, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin. 2020;25:102086.

    Article  PubMed  Google Scholar 

  264. Henley B, et al. Effects of candesartan on cerebral microvascular function in mild cognitive impairment: results of two clinical trials. Int J Stroke. 2023;18(6):736–44.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29(3):640–7.

    Article  CAS  PubMed  Google Scholar 

  266. Zhang Z, et al. ACE I/D polymorphism affects cognitive function and gray-matter volume in amnestic mild cognitive impairment. Behav Brain Res. 2011;218(1):114–20.

    Article  CAS  PubMed  Google Scholar 

  267. Pelisch N, et al. RAS inhibition attenuates cognitive impairment by reducing blood- brain barrier permeability in hypertensive subjects. Curr Hypertens Rev. 2013;9(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  268. Pelisch N, et al. Blockade of AT1 receptors protects the blood-brain barrier and improves cognition in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2011;24(3):362–8.

    Article  CAS  PubMed  Google Scholar 

  269. Unterberg AW, et al. Edema and brain trauma. Neuroscience. 2004;129(4):1021–9.

    Article  CAS  PubMed  Google Scholar 

  270. Winkler EA, et al. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am. 2016;27(4):473–88.

    Article  PubMed  Google Scholar 

  271. Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):230–46.

    Article  CAS  PubMed  Google Scholar 

  272. Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–9.

    Article  CAS  PubMed  Google Scholar 

  273. Jayakumar AR, et al. Activation of NF-kappaB mediates astrocyte swelling and brain edema in traumatic brain injury. J Neurotrauma. 2014;31(14):1249–57.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Panahpour H, Nekooeian AA, Dehghani GA. Blockade of central angiotensin II AT1 receptor protects the brain from ischemia/reperfusion injury in normotensive rats. Iran J Med Sci. 2014;39(6):536–42.

    PubMed  PubMed Central  Google Scholar 

  275. Asiedu-Gyekye IJ, Vaktorovich A. The “no-reflow” phenomenon in cerebral circulation. Med Sci Monit. 2003;9(11):Br394-7.

    PubMed  Google Scholar 

  276. Biancardi VC, Stern JE. Compromised blood-brain barrier permeability: novel mechanism by which circulating angiotensin II signals to sympathoexcitatory centres during hypertension. J Physiol. 2016;594(6):1591–600.

    Article  CAS  PubMed  Google Scholar 

  277. Yao X, et al. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma. 2015;32(19):1458–64.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Imai H, et al. Renin-angiotensin system plays an important role in the regulation of water transport in the peritoneum. Adv Perit Dial. 2001;17:20–4.

    CAS  PubMed  Google Scholar 

  279. Kawano H, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 2012;349(1):169–80.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Messori A, et al. Predicting posttraumatic epilepsy with MRI: prospective longitudinal morphologic study in adults. Epilepsia. 2005;46(9):1472–81.

    Article  PubMed  Google Scholar 

  281. Goritz C, et al. A pericyte origin of spinal cord scar tissue. Science. 2011;333(6039):238–42.

    Article  PubMed  Google Scholar 

  282. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  283. Soderblom C, et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci. 2013;33(34):13882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Seeland U, et al. Effects of AT1- and beta-adrenergic receptor antagonists on TGF-beta1-induced fibrosis in transgenic mice. Eur J Clin Invest. 2009;39(10):851–9.

    Article  CAS  PubMed  Google Scholar 

  285. Marut W, et al. Amelioration of systemic fibrosis in mice by angiotensin II receptor blockade. Arthritis Rheum. 2013;65(5):1367–77.

    Article  CAS  PubMed  Google Scholar 

  286. Bar-Klein G, et al. Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol. 2014;75(6):864–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Yi ET, et al. Telmisartan attenuates hepatic fibrosis in bile duct-ligated rats. Acta Pharmacol Sin. 2012;33(12):1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Brooke BS, et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008;358(26):2787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Habashi JP, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Lakatos HF, et al. The role of PPARs in lung fibrosis. PPAR Res. 2007;2007:71323.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Saavedra JM. Evidence to consider angiotensin ii receptor blockers for the treatment of early Alzheimer’s disease. Cell Mol Neurobiol. 2016;36(2):259–79.

    Article  CAS  PubMed  Google Scholar 

  292. Nakatsu Y, et al. Glutamate excitotoxicity is involved in cell death caused by tributyltin in cultured rat cortical neurons. Toxicol Sci. 2006;89(1):235–42.

    Article  CAS  PubMed  Google Scholar 

  293. Wang J, et al. Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARgamma activation. Neuropharmacology. 2014;79:249–61.

    Article  CAS  PubMed  Google Scholar 

  294. Abdul-Muneer PM, Bhowmick S, Briski N. Angiotensin II causes neuronal damage in stretch-injured neurons: protective effects of losartan, an angiotensin T(1) receptor blocker. Mol Neurobiol. 2018;55(7):5901–12.

    Article  CAS  PubMed  Google Scholar 

  295. Sohn YI, et al. Antihypertensive drug Valsartan promotes dendritic spine density by altering AMPA receptor trafficking. Biochem Biophys Res Commun. 2013;439(4):464–70.

    Article  CAS  PubMed  Google Scholar 

  296. Lou M, et al. Sustained blockade of brain AT1 receptors before and after focal cerebral ischemia alleviates neurologic deficits and reduces neuronal injury, apoptosis, and inflammatory responses in the rat. J Cereb Blood Flow Metab. 2004;24(5):536–47.

    Article  CAS  PubMed  Google Scholar 

  297. Ishrat T, et al. Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res. 2013;38(12):2668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Gouveia F, et al. Targeting brain Renin-Angiotensin System for the prevention and treatment of Alzheimer’s disease: Past, present and future. Ageing Res Rev. 2022;77:101612.

    Article  CAS  PubMed  Google Scholar 

  299. Demers-Marcil S, Coles JP. Cerebral metabolic derangements following traumatic brain injury. Curr Opin Anaesthesiol. 2022;35(5):562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Bernini A, et al. Cerebral metabolic dysfunction at the acute phase of traumatic brain injury correlates with long-term tissue loss. J Neurotrauma. 2023;40(5–6):472–81.

    Article  PubMed  Google Scholar 

  301. Sowers JL, et al. Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods. iScience. 2021;24(10):103108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Butterfield DA, Reed TT. Lipid peroxidation and tyrosine nitration in traumatic brain injury: Insights into secondary injury from redox proteomics. Proteomics Clin Appl. 2016;10(12):1191–204.

    Article  CAS  PubMed  Google Scholar 

  303. Wu J, Lipinski MM. Autophagy in neurotrauma: good, bad, or dysregulated. Cells. 2019;8(7).

  304. Hiebert JB, et al. Traumatic brain injury and mitochondrial dysfunction. Am J Med Sci. 2015;350(2):132–8.

    Article  PubMed  Google Scholar 

  305. Moffett JR, et al. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. Front Neuroenergetics. 2013;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Marrero MB, et al. Angiotensin II-induced insulin resistance and protein tyrosine phosphatases. Arterioscler Thromb Vasc Biol. 2004;24(11):2009–13.

    Article  CAS  PubMed  Google Scholar 

  307. Wang N, et al. Losartan increases muscle insulin delivery and rescues insulin’s metabolic action during lipid infusion via microvascular recruitment. Am J Physiol Endocrinol Metab. 2013;304(5):E538–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Zhao S, Sun W, Jiang P. Role of the ACE2/Ang-(1–7)/Mas axis in glucose metabolism. Rev Cardiovasc Med. 2021;22(3):769–77.

    Article  PubMed  Google Scholar 

  309. Hwang YJ, Park JH, Cho DH. Activation of AMPK by telmisartan decreases basal and PDGF-stimulated VSMC proliferation via inhibiting the mTOR/p70S6K signaling axis. J Korean Med Sci. 2020;35(35):e289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Rege SD, et al. Brain trauma disrupts hepatic lipid metabolism: blame it on fructose? Mol Nutr Food Res. 2019;63(15):e1801054.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Sanfilippo F, et al. Liver function test abnormalities after traumatic brain injury: is hepato-biliary ultrasound a sensitive diagnostic tool? Br J Anaesth. 2014;112(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  312. Crenn P, et al. Changes in weight after traumatic brain injury in adult patients: a longitudinal study. Clin Nutr. 2014;33(2):348–53.

    Article  PubMed  Google Scholar 

  313. Mowery NT, et al. Stress insulin resistance is a marker for mortality in traumatic brain injury. J Trauma. 2009;66(1):145–51; discussion 151–3.

    CAS  PubMed  Google Scholar 

  314. Labi ML, Horn LJ. Hypertension in traumatic brain injury. Brain Inj. 1990;4(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  315. Shiozaki T. Hypertension and head injury. Curr Hypertens Rep. 2005;7(6):450–3.

    Article  PubMed  Google Scholar 

  316. Venkata C, Kasal J. Cardiac dysfunction in adult patients with traumatic brain injury: a prospective cohort study. Clin Med Res. 2018;16(3–4):57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Rasouli J, et al. Brain-spleen inflammatory coupling: a literature review. Einstein J Biol Med. 2011;27(2):74–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Rowe RK, et al. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge. Mol Pain. 2016;12.

  319. Chaban V, et al. Systemic inflammation persists the first year after mild traumatic brain injury: results from the prospective trondheim mild traumatic brain injury study. J Neurotrauma. 2020;37(19):2120–30.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Hazeldine J, Lord JM, Belli A. Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front Neurol. 2015;6:235.

    Article  PubMed  PubMed Central  Google Scholar 

  321. Dwyer B, Katz DI. Postconcussion syndrome. Handb Clin Neurol. 2018;158:163–78.

    Article  PubMed  Google Scholar 

  322. Nampiaparampil DE. Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA. 2008;300(6):711–9.

    Article  CAS  PubMed  Google Scholar 

  323. Tronvik E, et al. Prophylactic treatment of migraine with an angiotensin II receptor blocker: a randomized controlled trial. JAMA. 2003;289(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  324. Stovner LJ, et al. A comparative study of candesartan versus propranolol for migraine prophylaxis: a randomised, triple-blind, placebo-controlled, double cross-over study. Cephalalgia. 2014;34(7):523–32.

    Article  PubMed  Google Scholar 

  325. Sanchez-Rodriguez C, et al. Real world effectiveness and tolerability of candesartan in the treatment of migraine: a retrospective cohort study. Sci Rep. 2021;11(1):3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Silberstein SD, et al. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology. 2012;78(17):1337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Diener HC, et al. Telmisartan in migraine prophylaxis: a randomized, placebo-controlled trial. Cephalalgia. 2009;29(9):921–7.

    Article  CAS  PubMed  Google Scholar 

  328. Ikeda K, et al. Treatment with telmisartan, a long-acting angiotensin II receptor blocker, prevents migraine attacks in Japanese non-responders to lomerizine. Neurol Sci. 2017;38(5):827–31.

    Article  PubMed  Google Scholar 

  329. Chrissobolis S, et al. Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacol Biochem Behav. 2020;199:173063.

    Article  CAS  PubMed  Google Scholar 

  330. Marvar PJ, et al. Limbic neuropeptidergic modulators of emotion and their therapeutic potential for anxiety and post-traumatic stress disorder. J Neurosci. 2021;41(5):901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Pavlatou MG, et al. Chronic administration of an angiotensin II receptor antagonist resets the hypothalamic-pituitary-adrenal (HPA) axis and improves the affect of patients with diabetes mellitus type 2: preliminary results. Stress. 2008;11(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  332. Degl’Innocenti A, et al. Cognitive function and health-related quality of life in elderly patients with hypertension–baseline data from the study on cognition and prognosis in the elderly (SCOPE). Blood Press. 2002;11(3):157–65.

    Article  PubMed  Google Scholar 

  333. Degl’Innocenti A, et al. Health-related quality of life during treatment of elderly patients with hypertension: results from the Study on COgnition and Prognosis in the Elderly (SCOPE). J Hum Hypertens. 2004;18(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  334. Khoury NM, et al. The renin-angiotensin pathway in posttraumatic stress disorder: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms. J Clin Psychiatry. 2012;73(6):849–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Stein MB, et al. Randomized, placebo-controlled trial of the angiotensin receptor antagonist losartan for posttraumatic stress disorder. Biol Psychiatry. 2021;90(7):473–81.

    Article  CAS  PubMed  Google Scholar 

  336. Coris EE, et al. Stimulant therapy utilization for neurocognitive deficits in mild traumatic brain injury. Sports Health. 2022;14(4):538–48.

    Article  PubMed  Google Scholar 

  337. Hajjar I, et al. Effects of candesartan vs lisinopril on neurocognitive function in older adults with executive mild cognitive impairment: a randomized clinical trial. JAMA Netw Open. 2020;3(8):e2012252.

    Article  PubMed  PubMed Central  Google Scholar 

  338. Hajjar I, et al. Safety and biomarker effects of candesartan in non-hypertensive adults with prodromal Alzheimer’s disease. Brain Commun. 2022;4(6):270.

    Article  Google Scholar 

  339. Papademetriou V, et al. Stroke prevention with the angiotensin II type 1-receptor blocker candesartan in elderly patients with isolated systolic hypertension: the Study on Cognition and Prognosis in the Elderly (SCOPE). J Am Coll Cardiol. 2004;44(6):1175–80.

    CAS  PubMed  Google Scholar 

  340. Saxby BK, et al. Candesartan and cognitive decline in older patients with hypertension: a substudy of the SCOPE trial. Neurology. 2008;70(19 Pt 2):1858–66.

    Article  CAS  PubMed  Google Scholar 

  341. Trenkwalder P. The Study on COgnition and Prognosis in the Elderly (SCOPE)–recent analyses. J Hypertens Suppl. 2006;24(1):S107–14.

    Article  CAS  PubMed  Google Scholar 

  342. Kehoe PG. The coming of age of the angiotensin hypothesis in Alzheimer’s disease: progress toward disease prevention and treatment? J Alzheimers Dis. 2018;62(3):1443–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol Res. 2020;154:104230.

    Article  CAS  PubMed  Google Scholar 

  344. Fouda AY, et al. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int. 2022;158:105375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Timaru-Kast R, et al. AT2 activation does not influence brain damage in the early phase after experimental traumatic brain injury in male mice. Sci Rep. 2022;12(1):14280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Fouda AY, et al. Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. Eur J Pharmacol. 2017;799:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Alhusban A, et al. Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. J Hypertens. 2015;33(1):170–80.

    Article  CAS  PubMed  Google Scholar 

  348. Bennion DM, et al. Protective effects of the angiotensin II AT(2) receptor agonist compound 21 in ischemic stroke: a nose-to-brain delivery approach. Clin Sci (Lond). 2018;132(5):581–93.

    Article  CAS  PubMed  Google Scholar 

  349. Zhao J, et al. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res. 2005;82(4):499–506.

    Article  CAS  PubMed  Google Scholar 

  350. Umschweif G, et al. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics. 2014.

  351. Ismael S, Ishrat T. Compound 21, a direct AT2R agonist, induces IL-10 and inhibits inflammation in mice following traumatic brain injury. Neuromolecular Med. 2022;24(3):274–8.

    Article  CAS  PubMed  Google Scholar 

  352. Chen YJ, et al. First-line drugs inhibiting the renin angiotensin system versus other first-line antihypertensive drug classes for hypertension. Cochrane Database Syst Rev. 2018;11:CD008170.

    PubMed  Google Scholar 

  353. Bernstein KE, et al. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 2013;65(1):1–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Panahpour H, Dehghani GA. Attenuation of focal cerebral ischemic injury following post-ischemic inhibition of angiotensin converting enzyme (ACE) activity in normotensive rat. Iran Biomed J. 2012;16(4):202–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  355. de Oliveira FF, et al. Brain-penetrating angiotensin-converting enzyme inhibitors and cognitive change in patients with dementia due to Alzheimer’s disease. J Alzheimers Dis. 2014;42(Suppl 3):S321–4.

    Article  PubMed  Google Scholar 

  356. Qiu WQ, et al. Angiotensin converting enzyme inhibitors and the reduced risk of Alzheimer’s disease in the absence of apolipoprotein E4 allele. J Alzheimers Dis. 2013;37(2):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Kehoe PG, Passmore PA. The renin-angiotensin system and antihypertensive drugs in Alzheimer’s disease: current standing of the angiotensin hypothesis? J Alzheimers Dis. 2012;30(Suppl 2):S251–68.

    Article  PubMed  Google Scholar 

  358. Du XL, et al. Risk of developing Alzheimer's disease and related dementias in allhat trial participants receiving diuretic, ace-inhibitor, or calcium-channel blocker with 18 years of follow-Up. J Alzheimers Dis Parkinsonism. 2022;12(3).

  359. Scotti L, et al. Association between renin-angiotensin-aldosterone system inhibitors and risk of dementia: a meta-analysis. Pharmacol Res. 2021;166: 105515.

    Article  CAS  PubMed  Google Scholar 

  360. Tiret L, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet. 1992;51(1):197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Xin XY, et al. Angiotensin-converting enzyme polymorphisms AND Alzheimer’s disease susceptibility: an updated meta-analysis. PLoS ONE. 2021;16(11):e0260498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Mayer NJ, et al. Association of the D allele of the angiotensin I converting enzyme polymorphism with malignant vascular injury. Mol Pathol. 2002;55(1):29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Chou PS, et al. Angiotensin-converting enzyme insertion/deletion polymorphism and the longitudinal progression of Alzheimer’s disease. Geriatr Gerontol Int. 2017;17(10):1544–50.

    Article  PubMed  Google Scholar 

  364. Ariza M, et al. Influence of Angiotensin-converting enzyme polymorphism on neuropsychological subacute performance in moderate and severe traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2006;18(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  365. Abuohashish HM, et al. ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats. Biomed Pharmacother. 2017;92:58–68.

    Article  CAS  PubMed  Google Scholar 

  366. Xiao HL, et al. Captopril improves postresuscitation hemodynamics protective against pulmonary embolism by activating the ACE2/Ang-(1–7)/Mas axis. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(11):1159–69.

    Article  CAS  PubMed  Google Scholar 

  367. Bennion DM, et al. Neuroprotective mechanisms of the ACE2-angiotensin-(1–7)-Mas axis in stroke. Curr Hypertens Rep. 2015;17(2):3.

    Article  PubMed  PubMed Central  Google Scholar 

  368. Regenhardt RW, Bennion DM, Sumners C. Cerebroprotective action of angiotensin peptides in stroke. Clin Sci (Lond). 2014;126(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  369. Bruhns RP, et al. Angiotensin-(1–7) improves cognitive function and reduces inflammation in mice following mild traumatic brain injury. Front Behav Neurosci. 2022;16:903980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Janatpour ZC, Symes AJ. The extended renin-angiotensin system: a promising target for traumatic brain injury therapeutics. Neural Regen Res. 2020;15(6):1025–6.

    Article  CAS  PubMed  Google Scholar 

  371. Gjymishka A, et al. Diminazene aceturate is an ACE2 activator and a novel antihypertensive drug. FASEB J. 2010;24:1032–3.

    Article  Google Scholar 

  372. Mecca AP, et al. Cerebroprotection by angiotensin-(1–7) in endothelin-1-induced ischaemic stroke. Exp Physiol. 2011;96(10):1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Savage PD, et al. Phase II trial of angiotensin-(1–7) for the treatment of patients with metastatic sarcoma. Sarcoma. 2016;2016:4592768.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Luna P, et al. Potential of angiotensin-(1–7) in COVID-19 treatment. Curr Protein Pept Sci. 2023;24(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  375. Bennion DM, et al. Activation of the neuroprotective angiotensin-converting enzyme 2 in rat ischemic stroke. Hypertension. 2015;66(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  376. Chen J, et al. Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology. 2014;79:550–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Oliveira-Lima OC, et al. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice. Immunobiology. 2015;220(12):1311–21.

    Article  CAS  PubMed  Google Scholar 

  378. Lee S, et al. Effect of a selective mas receptor agonist in cerebral ischemia in vitro and in vivo. PLoS ONE. 2015;10(11):e0142087.

    Article  PubMed  PubMed Central  Google Scholar 

  379. Xiao X, et al. Angiotensin-(1–7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp Cell Res. 2015;336(1):58–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Wu J, et al. Ang-(1–7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9. Eur J Pharmacol. 2015;748:30–6.

    Article  CAS  PubMed  Google Scholar 

  381. Bild W, Ciobica A. Angiotensin-(1–7) central administration induces anxiolytic-like effects in elevated plus maze and decreased oxidative stress in the amygdala. J Affect Disord. 2013;145(2):165–71.

    Article  CAS  PubMed  Google Scholar 

  382. Walther T, et al. Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene. J Biol Chem. 1998;273(19):11867–73.

    Article  CAS  PubMed  Google Scholar 

  383. Wang L, et al. Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology. 2016;105:114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  384. Nakagawasai O, et al. Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice. Mol Brain. 2023;16(1):52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Xie W, et al. Angiotensin-(1–7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res. 2014;1573:44–53.

    Article  CAS  PubMed  Google Scholar 

  386. Hellner K, et al. Angiotensin-(1–7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas. Mol Cell Neurosci. 2005;29(3):427–35.

    Article  CAS  PubMed  Google Scholar 

  387. Evans CE, et al. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol. 2020;139(3):485–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Duan R, et al. ACE2 activator diminazene aceturate ameliorates Alzheimer’s disease-like neuropathology and rescues cognitive impairment in SAMP8 mice. Aging (Albany NY). 2020;12(14):14819–29.

    Article  CAS  PubMed  Google Scholar 

  389. Jiang T, et al. Angiotensin-(1–7) is reduced and inversely correlates with tau hyperphosphorylation in animal models of Alzheimer’s disease. Mol Neurobiol. 2016;53(4):2489–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviva J. Symes.

Ethics declarations

Disclaimer

The opinions and assertions expressed herein are those of the authors and do not reflect the official policy or position of the Uniformed Services University of the Health Sciences, Houston Methodist Hospital, or the Department of Defense.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villapol, S., Janatpour, Z.C., Affram, K.O. et al. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 20, 1565–1591 (2023). https://doi.org/10.1007/s13311-023-01435-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01435-8

Keywords

Navigation