Skip to main content

Advertisement

Log in

Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

This study investigated the effect of post-stroke, direct AT2-receptor (AT2R) stimulation with the non-peptide AT2R-agonist compound 21 (C21) on infarct size, survival and neurological outcome after middle cerebral artery occlusion (MCAO) in mice and looked for potential underlying mechanisms. C57/BL6J or AT2R-knockout mice (AT2-KO) underwent MCAO for 30 min followed by reperfusion. Starting 45 min after MCAO, mice were treated once daily for 4 days with either vehicle or C21 (0.03 mg/kg ip). Neurological deficits were scored daily. Infarct volumes were measured 96 h post-stroke by MRI. C21 significantly improved survival after MCAO when compared to vehicle-treated mice. C21 treatment had no impact on infarct size, but significantly attenuated neurological deficits. Expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor B (TrkB) (receptor for BDNF) and growth-associated protein 43 (GAP-43) were significantly increased in the peri-infarct cortex of C21-treated mice when compared to vehicle-treated mice. Furthermore, the number of apoptotic neurons was significantly decreased in the peri-infarct cortex in mice treated with C21 compared to controls. There were no effects of C21 on neurological outcome, infarct size and expression of BDNF or GAP-43 in AT2-KO mice. From these data, it can be concluded that AT2R stimulation attenuates early mortality and neurological deficits after experimental stroke through neuroprotective mechanisms in an AT2R-specific way.

Key message

• AT2R stimulation after MCAO in mice reduces mortality and neurological deficits.

• AT2R stimulation increases BDNF synthesis and protects neurons from apoptosis.

• The AT2R-agonist C21 acts protectively when applied post-stroke and peripherally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sumners C, Horiuchi M, Widdop RE, McCarthy C, Unger T, Steckelings UM (2013) Protective arms of the renin-angiotensin-system in neurological disease. Clin Exp Pharmacol Physiol 40:580–588

    Article  CAS  PubMed  Google Scholar 

  2. Laflamme L, Gasparo M, Gallo JM, Payet MD, Gallo-Payet N (1996) Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells. Effect counteracted by the AT1 receptors. J Biol Chem 271:22729–22735

    Article  CAS  PubMed  Google Scholar 

  3. Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T (1996) The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 122:59–67

    Article  CAS  PubMed  Google Scholar 

  4. Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reinecke K, Lucius R, Reinecke A, Rickert U, Herdegen T, Unger T (2003) Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J 17:2094–2096

    CAS  PubMed  Google Scholar 

  6. Namsolleck P, Boato F, Schwengel K, Paulis L, Matho KS, Geurts N, Thöne-Reineke C, Lucht K, Seidel K, Hallberg A et al (2013) AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression. Neurobiol Dis 51:177–191

    Article  CAS  PubMed  Google Scholar 

  7. Iwai M, Liu H-W, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M, Seidel K, Dirnagl U et al (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 19:617–619

    CAS  PubMed  Google Scholar 

  9. McCarthy CA, Vinh A, Callaway JK, Widdop RE (2009) Angiotensin AT2 receptor stimulation causes neuroprotection in a conscious rat model of stroke. Stroke 40:1482–1489

    Article  CAS  PubMed  Google Scholar 

  10. McCarthy CA, Vinh A, Broughton BRS, Sobey CG, Callaway JK, Widdop RE (2012) Angiotensin II type 2 receptor stimulation initiated after stroke causes neuroprotection in conscious rats. Hypertension 60:1531–1537

    Article  CAS  PubMed  Google Scholar 

  11. Wan Y, Wallinder C, Plouffe B, Beaudry H, Mahalingam AK, Wu X, Johansson B, Holm M, Botoros M, Karlén A et al (2004) Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J Med Chem 47:5995–6008

    Article  CAS  PubMed  Google Scholar 

  12. Steckelings UM, Larhed M, Hallberg A, Widdop RE, Jones ES, Wallinder C, Namsolleck P, Dahlöf B, Unger T (2011) Non-peptide AT2-receptor agonists. Curr Opin Pharmacol 11:187–192

    Article  CAS  PubMed  Google Scholar 

  13. Gelosa P, Pignieri A, Fändriks L, de Gasparo M, Hallberg A, Banfi C, Castiglioni L, Turolo L, Guerrini U, Tremoli E et al (2009) Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens 27:2444–2451

    Article  CAS  PubMed  Google Scholar 

  14. Min L-J, Mogi M, Tsukuda K, Jing F, Ohshima K, Nakaoka H, Kan-No H, Wang XL, Chisaka T, Bai HY et al (2014) Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage. Am J Hypertens 27:1036–1044

    Article  PubMed  Google Scholar 

  15. Alhusban A, Fouda AY, Pillai B, Ishrat T, Soliman S, Fagan SC (2015) Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. J Hypertens 33:170–180

    Article  CAS  PubMed  Google Scholar 

  16. Joseph JP, Mecca AP, Regenhardt RW, Bennion DM, Rodríguez V, Desland F, Patel NA, Pioquinto DJ, Unger T, Katovich MJ et al (2014) The angiotensin type 2 receptor agonist compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacology 81:134–141

    Article  CAS  PubMed  Google Scholar 

  17. McCarthy CA, Vinh A, Miller AA, Hallberg A, Alterman M, Callaway JK, Widdop RE (2014) Direct angiotensin AT2 receptor stimulation using a novel AT2 receptor agonist, compound 21, evokes neuroprotection in conscious hypertensive rats. PLoS One 9:e95762

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brunner E (2002) Nonparametric analysis of longitudinal data in factorial experiments. J. Wiley, New York

    Google Scholar 

  19. Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759

    Article  CAS  PubMed  Google Scholar 

  20. Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65:895–903

    Article  CAS  PubMed  Google Scholar 

  21. Denny JB (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4:293–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Skene JH, Willard M (1981) Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol 89:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219

    Article  CAS  PubMed  Google Scholar 

  24. Schäbitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506

    Article  PubMed  Google Scholar 

  25. Yamashita K, Wiessner C, Lindholm D, Thoenen H, Hossmann KA (1997) Post-occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab Brain Dis 12:271–280

    CAS  PubMed  Google Scholar 

  26. Pardridge WM, Kang YS, Buciak JL (1994) Transport of human recombinant brain-derived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector-mediated peptide drug delivery. Pharm Res 11:738–746

    Article  CAS  PubMed  Google Scholar 

  27. Biffo S, Offenhäuser N, Carter BD, Barde YA (1995) Selective binding and internalisation by truncated receptors restrict the availability of BDNF during development. Development 121:2461–2470

    CAS  PubMed  Google Scholar 

  28. Williams LR (1991) Hypophagia is induced by intracerebroventricular administration of nerve growth factor. Exp Neurol 113:31–37

    Article  CAS  PubMed  Google Scholar 

  29. Winkler J, Ramirez GA, Kuhn HG, Peterson DA, Day-Lollini PA, Stewart GR, Tuszynski MH, Gage FH, Thal LJ (1997) Reversible Schwann cell hyperplasia and sprouting of sensory and sympathetic neurites after intraventricular administration of nerve growth factor. Ann Neurol 41:82–93

    Article  CAS  PubMed  Google Scholar 

  30. Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW (1999) Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci 19:5138–5148

    CAS  PubMed  Google Scholar 

  31. Groth R, Aanonsen L (2002) Spinal brain-derived neurotrophic factor (BDNF) produces hyperalgesia in normal mice while antisense directed against either BDNF or trkB, prevent inflammation-induced hyperalgesia. Pain 100:171–181

    Article  CAS  PubMed  Google Scholar 

  32. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  CAS  PubMed  Google Scholar 

  33. Fournier AE, Beer J, Arregui CO, Essagian C, Aguayo AJ, McKerracher L (1997) Brain-derived neurotrophic factor modulates GAP-43 but not T alpha1 expression in injured retinal ganglion cells of adult rats. J Neurosci Res 47:561–572

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by EUREKA’s Eurostars programme of the European Union and the German Ministry for Research and Technology, by a fellowship from the Berlin-Padua-Gdansk Ph.D. programme to VVE and by internal sources from Charité, Universitätsmedizin Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Muscha Steckelings.

Ethics declarations

Conflict of interests

UMS has received modest research support from Vicore Pharma. BD has substantial ownership in Vicore Pharma Holding (publ.), the owner of Vicore Pharma. The other authors report no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Detailed description of methods (PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwengel, K., Namsolleck, P., Lucht, K. et al. Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice. J Mol Med 94, 957–966 (2016). https://doi.org/10.1007/s00109-016-1406-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1406-3

Keywords

Navigation