Skip to main content

Advertisement

Log in

Sex differences in cardiovascular actions of the renin–angiotensin system

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) remains a worldwide public health concern despite decades of research and the availability of numerous targeted therapies. While the intrinsic physiological mechanisms regulating cardiovascular function are similar between males and females, marked sex differences have been established in terms of CVD onset, pathophysiology, manifestation, susceptibility, prevalence, treatment responses and outcomes in animal models and clinical populations. Premenopausal females are generally protected from CVD in comparison to men of similar age, with females tending to develop cardiovascular complications later in life following menopause. Emerging evidence suggests this cardioprotection in females is, in part, attributed to sex differences in hormonal regulators, such as the renin–angiotensin system (RAS). To date, research has largely focused on canonical RAS pathways and shown that premenopausal females are protected from cardiovascular derangements produced by activation of angiotensin II pathways. More recently, a vasodilatory arm of the RAS has emerged that is characterized by angiotensin-(1-7) [(Ang-(1-7)], angiotensin-converting enzyme 2 and Mas receptors. Emerging studies provide evidence for a shift towards these cardioprotective Ang-(1-7) pathways in females, with effects modulated by interactions with estrogen. Despite well-established sex differences, female comparison studies on cardiovascular outcomes are lacking at both the preclinical and clinical levels. Furthermore, there are no specific guidelines in place for the treatment of cardiovascular disease in men versus women, including therapies targeting the RAS. This review summarizes current knowledge on sex differences in the cardiovascular actions of the RAS, focusing on interactions with gonadal hormones, emerging data for protective Ang-(1-7) pathways and potential clinical implications for established and novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, Stroke Statistics S (2017) Heart disease and stroke statistics—2017 update: a report from the American heart association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kjeldsen SE (2018) Hypertension and cardiovascular risk: general aspects. Pharmacol Res 129:95–99. https://doi.org/10.1016/j.phrs.2017.11.003

    Article  PubMed  Google Scholar 

  3. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97(1):1–37. https://doi.org/10.1152/physrev.00021.2015

    Article  PubMed  Google Scholar 

  4. Colafella KMM, Denton KM (2018) Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 14(3):185–201. https://doi.org/10.1038/nrneph.2017.189

    Article  PubMed  Google Scholar 

  5. Komukai K, Mochizuki S, Yoshimura M (2010) Gender and the renin–angiotensin–aldosterone system. Fundam Clin Pharmacol 24(6):687–698. https://doi.org/10.1111/j.1472-8206.2010.00854.x

    Article  CAS  PubMed  Google Scholar 

  6. White MC, Fleeman R, Arnold AC (2019) Sex differences in the metabolic effects of the renin–angiotensin system. Biol Sex Differ 10(1):31. https://doi.org/10.1186/s13293-019-0247-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fernandez-Atucha A, Izagirre A, Fraile-Bermudez AB, Kortajarena M, Larrinaga G, Martinez-Lage P, Echevarria E, Gil J (2017) Sex differences in the aging pattern of renin–angiotensin system serum peptidases. Biol Sex Differ 8:5. https://doi.org/10.1186/s13293-017-0128-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dasinger JH, Alexander BT (2016) Gender differences in developmental programming of cardiovascular diseases. Clin Sci (Lond) 130(5):337–348. https://doi.org/10.1042/CS20150611

    Article  CAS  Google Scholar 

  9. Kurtz A (2011) Renin release: sites, mechanisms, and control. Annu Rev Physiol 73:377–399. https://doi.org/10.1146/annurev-physiol-012110-142238

    Article  CAS  PubMed  Google Scholar 

  10. Miller AJ, Arnold AC (2019) The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clin Auton Res 29(2):231–243. https://doi.org/10.1007/s10286-018-0572-5

    Article  PubMed  Google Scholar 

  11. Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11(1):19–31. https://doi.org/10.1177/1470320309347785

    Article  CAS  PubMed  Google Scholar 

  12. Medina D, Arnold AC (2019) Angiotensin-(1-7): translational avenues in cardiovascular control. Am J Hypertens 32(12):1133–1142. https://doi.org/10.1093/ajh/hpz146

    Article  PubMed  PubMed Central  Google Scholar 

  13. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ (2018) The ACE2/angiotensin-(1-7)/MAS axis of the renin–angiotensin system: focus on angiotensin-(1-7). Physiol Rev 98(1):505–553. https://doi.org/10.1152/physrev.00023.2016

    Article  CAS  PubMed  Google Scholar 

  14. Stocco C (2012) Tissue physiology and pathology of aromatase. Steroids 77(1–2):27–35. https://doi.org/10.1016/j.steroids.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53(3):672–677. https://doi.org/10.1016/s0008-6363(01)00479-5

    Article  CAS  PubMed  Google Scholar 

  16. Schunkert H, Danser AH, Hense HW, Derkx FH, Kurzinger S, Riegger GA (1997) Effects of estrogen replacement therapy on the renin–angiotensin system in postmenopausal women. Circulation 95(1):39–45. https://doi.org/10.1161/01.cir.95.1.39

    Article  CAS  PubMed  Google Scholar 

  17. De Lignieres B, Basdevant A, Thomas G, Thalabard JC, Mercier-Bodard C, Conard J, Guyene TT, Mairon N, Corvol P, Guy-Grand B Mauvais-Jarvis P, Sitruk-Ware R (1986) Biological effects of estradiol-17β in postmenopausal women: oral versus percutaneous administration. J Clin Endocrinol Metab 62(3):536–541. https://doi.org/10.1210/jcem-62-3-536

    Article  PubMed  Google Scholar 

  18. Hassager C, Riis BJ, Strom V, Guyene TT, Christiansen C (1987) The long-term effect of oral and percutaneous estradiol on plasma renin substrate and blood pressure. Circulation 76(4):753–758. https://doi.org/10.1161/01.cir.76.4.753

    Article  CAS  PubMed  Google Scholar 

  19. Roesch DM, Tian Y, Zheng W, Shi M, Verbalis JG, Sandberg K (2000) Estradiol attenuates angiotensin-induced aldosterone secretion in ovariectomized rats. Endocrinology 141(12):4629–4636. https://doi.org/10.1210/endo.141.12.7822

    Article  CAS  PubMed  Google Scholar 

  20. Wu Z, Maric C, Roesch DM, Zheng W, Verbalis JG, Sandberg K (2003) Estrogen regulates adrenal angiotensin AT1 receptors by modulating AT1 receptor translation. Endocrinology 144(7):3251–3261. https://doi.org/10.1210/en.2003-0015

    Article  CAS  PubMed  Google Scholar 

  21. Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A (1998) Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 31(1 Pt 2):342–348. https://doi.org/10.1161/01.hyp.31.1.342

    Article  CAS  PubMed  Google Scholar 

  22. Brosnihan KB, Li P, Ganten D, Ferrario CM (1997) Estrogen protects transgenic hypertensive rats by shifting the vasoconstrictor–vasodilator balance of RAS. Am J Physiol 273(6):R1908–1915. https://doi.org/10.1152/ajpregu.1997.273.6.R1908

    Article  CAS  PubMed  Google Scholar 

  23. Xu X, Xiao JC, Luo LF, Wang S, Zhang JP, Huang JJ, Liu ML, Liu CG, Xu KQ, Li YJ, Song HP (2008) Effects of ovariectomy and 17β-estradiol treatment on the renin–angiotensin system, blood pressure, and endothelial ultrastructure. Int J Cardiol 130(2):196–204. https://doi.org/10.1016/j.ijcard.2007.08.041

    Article  PubMed  Google Scholar 

  24. Chao HH, Chen JJ, Chen CH, Lin H, Cheng CF, Lian WS, Chen YL, Juan SH, Liu JC, Liou JY, Chan P, Cheng TH (2005) Inhibition of angiotensin II induced endothelin-1 gene expression by 17-β-oestradiol in rat cardiac fibroblasts. Heart 91(5):664–669. https://doi.org/10.1136/hrt.2003.031898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ichikawa J, Sumino H, Ichikawa S, Ozaki M (2006) Different effects of transdermal and oral hormone replacement therapy on the renin–angiotensin system, plasma bradykinin level, and blood pressure of normotensive postmenopausal women. Am J Hypertens 19(7):744–749. https://doi.org/10.1016/j.amjhyper.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Gupte M, Thatcher SE, Boustany-Kari CM, Shoemaker R, Yiannikouris F, Zhang X, Karounos M, Cassis LA (2012) Angiotensin converting enzyme 2 contributes to sex differences in the development of obesity hypertension in C57BL/6 mice. Arterioscler Thromb Vasc Biol 32(6):1392–1399. https://doi.org/10.1161/ATVBAHA.112.248559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sullivan JC, Rodriguez-Miguelez P, Zimmerman MA, Harris RA (2015) Differences in angiotensin (1-7) between men and women. Am J Physiol Heart Circ Physiol 308(9):H1171–1176. https://doi.org/10.1152/ajpheart.00897.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mompeon A, Lazaro-Franco M, Bueno-Beti C, Perez-Cremades D, Vidal-Gomez X, Monsalve E, Gironacci MM, Hermenegildo C, Novella S (2016) Estradiol, acting through ERα, induces endothelial non-classic renin–angiotensin system increasing angiotensin 1-7 production. Mol Cell Endocrinol 422:1–8. https://doi.org/10.1016/j.mce.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  29. Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, Bornfleth P, Kutschka I, Gardemann A, Isermann B, Goette A (2017) Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med (Maywood) 242(14):1412–1423. https://doi.org/10.1177/1535370217718808

    Article  CAS  Google Scholar 

  30. Lee SH, Lee YH, Jung SW, Kim DJ, Park SH, Song SJ, Jeong KH, Moon JY, Ihm CG, Lee TW, Kim JS, Sohn IS, Lee SY, Kim DO, Kim YG (2019) Sex-related differences in the intratubular renin–angiotensin system in two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 317(3):F670–F682. https://doi.org/10.1152/ajprenal.00451.2018

    Article  CAS  PubMed  Google Scholar 

  31. Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM (2005) Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept 124(1–3):7–17. https://doi.org/10.1016/j.regpep.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  32. Macova M, Armando I, Zhou J, Baiardi G, Tyurmin D, Larrayoz-Roldan IM, Saavedra JM (2008) Estrogen reduces aldosterone, upregulates adrenal angiotensin II AT2 receptors and normalizes adrenomedullary Fra-2 in ovariectomized rats. Neuroendocrinology 88(4):276–286. https://doi.org/10.1159/000150977

    Article  CAS  PubMed  Google Scholar 

  33. Yoshimura Y, Karube M, Aoki H, Oda T, Koyama N, Nagai A, Akimoto Y, Hirano H, Nakamura Y (1996) Angiotensin II induces ovulation and oocyte maturation in rabbit ovaries via the AT2 receptor subtype. Endocrinology 137(4):1204–1211. https://doi.org/10.1210/endo.137.4.8625890

    Article  CAS  PubMed  Google Scholar 

  34. Vargas-Castillo A, Tobon-Cornejo S, Del Valle-Mondragon L, Torre-Villalvazo I, Schcolnik-Cabrera A, Guevara-Cruz M, Pichardo-Ontiveros E, Fuentes-Romero R, Bader M, Alenina N, Vidal-Puig A, Hong E, Torres N, Tovar AR (2019) Angiotensin-(1-7) induces beige fat thermogenesis through the Mas receptor. Metabolism 103:154048. https://doi.org/10.1016/j.metabol.2019.154048

    Article  CAS  PubMed  Google Scholar 

  35. Costa-Fraga FP, Goncalves GK, Souza-Neto FP, Reis AM, Capettini LA, Santos RA, Fraga-Silva RA, Stergiopulos N, da Silva RF (2018) Age-related changes in vascular responses to angiotensin-(1-7) in female mice. J Renin Angiotensin Aldosterone Syst 19(3):1470320318789332. https://doi.org/10.1177/1470320318789332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Novella S, Perez-Cremades D, Mompeon A, Hermenegildo C (2019) Mechanisms underlying the influence of oestrogen on cardiovascular physiology in women. J Physiol 597(19):4873–4886. https://doi.org/10.1113/JP278063

    Article  CAS  PubMed  Google Scholar 

  37. Ellison KE, Ingelfinger JR, Pivor M, Dzau VJ (1989) Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest 83(6):1941–1945. https://doi.org/10.1172/JCI114102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen YF, Naftilan AJ, Oparil S (1992) Androgen-dependent angiotensinogen and renin messenger RNA expression in hypertensive rats. Hypertension 19(5):456–463. https://doi.org/10.1161/01.hyp.19.5.456

    Article  CAS  PubMed  Google Scholar 

  39. Baltatu O, Cayla C, Iliescu R, Andreev D, Bader M (2003) Abolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats. Hypertension 41(3 Pt 2):830–833. https://doi.org/10.1161/01.HYP.0000048702.55183.89

    Article  CAS  PubMed  Google Scholar 

  40. Chinnathambi V, More AS, Hankins GD, Yallampalli C, Sathishkumar K (2014) Gestational exposure to elevated testosterone levels induces hypertension via heightened vascular angiotensin II type 1 receptor signaling in rats. Biol Reprod 91(1):6. https://doi.org/10.1095/biolreprod.114.118968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Freshour JR, Chase SE, Vikstrom KL (2002) Gender differences in cardiac ACE expression are normalized in androgen-deprived male mice. Am J Physiol Heart Circ Physiol 283(5):H1997–2003. https://doi.org/10.1152/ajpheart.01054.2001

    Article  CAS  PubMed  Google Scholar 

  42. Leung PS, Wong TP, Chung YW, Chan HC (2002) Androgen dependent expression of AT1 receptor and its regulation of anion secretion in rat epididymis. Cell Biol Int 26(1):117–122. https://doi.org/10.1006/cbir.2001.0830

    Article  CAS  PubMed  Google Scholar 

  43. Mishra JS, More AS, Gopalakrishnan K, Kumar S (2019) Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol Reprod 100(1):139–148. https://doi.org/10.1093/biolre/ioy179

    Article  PubMed  Google Scholar 

  44. Mishra JS, Hankins GD, Kumar S (2016) Testosterone downregulates angiotensin II type-2 receptor via androgen receptor-mediated ERK1/2 MAP kinase pathway in rat aorta. J Renin Angiotensin Aldosterone Syst 17(4):1470320316674875. https://doi.org/10.1177/1470320316674875

  45. Douglas GC, O'Bryan MK, Hedger MP, Lee DK, Yarski MA, Smith AI, Lew RA (2004) The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology 145(10):4703–4711. https://doi.org/10.1210/en.2004-0443

    Article  CAS  PubMed  Google Scholar 

  46. Kang NN, Fu L, Xu J, Han Y, Cao JX, Sun JF, Zheng M (2012) Testosterone improves cardiac function and alters angiotensin II receptors in isoproterenol-induced heart failure. Arch Cardiovasc Dis 105(2):68–76. https://doi.org/10.1016/j.acvd.2011.12.002

    Article  PubMed  Google Scholar 

  47. dos Santos RL, da Silva FB, Ribeiro RF Jr, Stefanon I (2014) Sex hormones in the cardiovascular system. Horm Mol Biol Clin Investig 18(2):89–103. https://doi.org/10.1515/hmbci-2013-0048

    Article  CAS  PubMed  Google Scholar 

  48. Kang AK, Duncan JA, Cattran DC, Floras JS, Lai V, Scholey JW, Miller JA (2001) Effect of oral contraceptives on the renin angiotensin system and renal function. Am J Physiol Regul Integr Comp Physiol 280(3):R807–813. https://doi.org/10.1152/ajpregu.2001.280.3.R807

    Article  CAS  PubMed  Google Scholar 

  49. Zakheim RM, Molteni A, Mattioli L, Mullis KB (1976) Angiotensin I-converting enzyme and angiotensin II levels in women receiving an oral contraceptive. J Clin Endocrinol Metab 42(3):588–589. https://doi.org/10.1210/jcem-42-3-588

    Article  CAS  PubMed  Google Scholar 

  50. Nickenig G, Strehlow K, Wassmann S, Baumer AT, Albory K, Sauer H, Bohm M (2000) Differential effects of estrogen and progesterone on AT(1) receptor gene expression in vascular smooth muscle cells. Circulation 102(15):1828–1833. https://doi.org/10.1161/01.cir.102.15.1828

    Article  CAS  PubMed  Google Scholar 

  51. Donadio MV, Gomes CM, Sagae SC, Franci CR, Anselmo-Franci JA, Lucion AB, Sanvitto GL (2006) Estradiol and progesterone modulation of angiotensin II receptors in the arcuate nucleus of ovariectomized and lactating rats. Brain Res 1083(1):103–109. https://doi.org/10.1016/j.brainres.2006.02.018

    Article  CAS  PubMed  Google Scholar 

  52. Seltzer A, Tsutsumi K, Shigematsu K, Saavedra JM (1993) Reproductive hormones modulate angiotensin II AT1 receptors in the dorsomedial arcuate nucleus of the female rat. Endocrinology 133(2):939–941. https://doi.org/10.1210/endo.133.2.8344227

    Article  CAS  PubMed  Google Scholar 

  53. Chesley LC, Tepper IH (1967) Effects of progesterone and estrogen on the sensitivity to angiotensin II. J Clin Endocrinol Metab 27(4):576–581. https://doi.org/10.1210/jcem-27-4-576

    Article  CAS  PubMed  Google Scholar 

  54. Johnson MC, Vega M, Vantman D, Troncoso JL, Devoto L (1997) Regulatory role of angiotensin II on progesterone production by cultured human granulosa cells. Expression of angiotensin II type-2 receptor. Mol Hum Reprod 3(8):663–668. https://doi.org/10.1093/molehr/3.8.663

    Article  CAS  PubMed  Google Scholar 

  55. Shefer G, Marcus Y, Knoll E, Dolkart O, Foichtwanger S, Nevo N, Limor R, Stern N (2016) Angiotensin 1-7 is a negative modulator of aldosterone secretion in vitro and in vivo. Hypertension 68(2):378–384. https://doi.org/10.1161/HYPERTENSIONAHA.116.07088

    Article  CAS  PubMed  Google Scholar 

  56. Funder JW (2013) Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control 6:129–138. https://doi.org/10.2147/IBPC.S13783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Szmuilowicz ED, Adler GK, Williams JS, Green DE, Yao TM, Hopkins PN, Seely EW (2006) Relationship between aldosterone and progesterone in the human menstrual cycle. J Clin Endocrinol Metab 91(10):3981–3987. https://doi.org/10.1210/jc.2006-1154

    Article  CAS  PubMed  Google Scholar 

  58. Stachenfeld NS, Taylor HS (2005) Progesterone increases plasma volume independent of estradiol. J Appl Physiol (1985) 98(6):1991–1997. https://doi.org/10.1152/japplphysiol.00031.2005

    Article  CAS  Google Scholar 

  59. Faulkner JL, Kennard S, Huby AC, Antonova G, Lu Q, Jaffe IZ, Patel VS, Fulton DJR, Belin de Chantemele EJ (2019) Progesterone predisposes females to obesity-associated leptin-mediated endothelial dysfunction via upregulating endothelial MR (mineralocorticoid receptor) expression. Hypertension 74(3):678–686. https://doi.org/10.1161/HYPERTENSIONAHA.119.12802

    Article  CAS  PubMed  Google Scholar 

  60. Cheng Y, Li Q, Zhang Y, Wen Q, Zhao J (2015) Effects of female sex hormones on expression of the Ang-(1-7)/Mas-R/nNOS pathways in rat brain. Can J Physiol Pharmacol 93(11):993–998. https://doi.org/10.1139/cjpp-2015-0087

    Article  CAS  PubMed  Google Scholar 

  61. Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du XJ (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145(9):4125–4133. https://doi.org/10.1210/en.2004-0209

    Article  CAS  PubMed  Google Scholar 

  62. Phie J, Haleagrahara N, Newton P, Constantinoiu C, Sarnyai Z, Chilton L, Kinobe R (2015) Prolonged subcutaneous administration of oxytocin accelerates angiotensin II-induced hypertension and renal damage in male rats. PLoS ONE 10(9):e0138048. https://doi.org/10.1371/journal.pone.0138048

    Article  PubMed  PubMed Central  Google Scholar 

  63. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15(14):2727–2729. https://doi.org/10.1096/fj.01-0457fje

    Article  CAS  PubMed  Google Scholar 

  64. Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, Daugherty A, Cassis LA (2012) Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60(6):1524–1530. https://doi.org/10.1161/HYPERTENSIONAHA.112.192690

    Article  CAS  PubMed  Google Scholar 

  65. Yiannikouris F, Karounos M, Charnigo R, English VL, Rateri DL, Daugherty A, Cassis LA (2012) Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 302(2):R244–251. https://doi.org/10.1152/ajpregu.00323.2011

    Article  CAS  PubMed  Google Scholar 

  66. Moreno C, Hoffman M, Stodola TJ, Didier DN, Lazar J, Geurts AM, North PE, Jacob HJ, Greene AS (2011) Creation and characterization of a renin knockout rat. Hypertension 57(3):614–619. https://doi.org/10.1161/HYPERTENSIONAHA.110.163840

    Article  CAS  PubMed  Google Scholar 

  67. Gradman AH, Weir MR, Wright M, Bush CA, Keefe DL (2010) Efficacy, safety and tolerability of aliskiren, a direct renin inhibitor, in women with hypertension: a pooled analysis of eight studies. J Hum Hypertens 24(11):721–729. https://doi.org/10.1038/jhh.2010.11

    Article  CAS  PubMed  Google Scholar 

  68. Gatineau E, Cohn DM, Poglitsch M, Loria AS, Gong M, Yiannikouris F (2019) Losartan prevents the elevation of blood pressure in adipose-PRR deficient female mice while elevated circulating sPRR activates the renin–angiotensin system. Am J Physiol Heart Circ Physiol 316(3):H506–H515. https://doi.org/10.1152/ajpheart.00473.2018

    Article  CAS  PubMed  Google Scholar 

  69. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, Bachman ES, Jennette JC, O'Brien DA, Smithies O (1995) Male–female differences in fertility and blood pressure in ACE-deficient mice. Nature 375(6527):146–148. https://doi.org/10.1038/375146a0

    Article  CAS  PubMed  Google Scholar 

  70. Toering TJ, van der Graaf AM, Visser FW, Buikema H, Navis G, Faas MM, Lely AT (2015) Gender differences in response to acute and chronic angiotensin II infusion: a translational approach. Physiol Rep 3(7):e12434. https://doi.org/10.14814/phy2.12434

  71. Sampson AK, Moritz KM, Denton KM (2012) Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gend Med 9(1):21–32. https://doi.org/10.1016/j.genm.2011.12.003

    Article  PubMed  Google Scholar 

  72. Xue B, Pamidimukkala J, Hay M (2005) Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol 288(5):H2177–2184. https://doi.org/10.1152/ajpheart.00969.2004

    Article  CAS  PubMed  Google Scholar 

  73. Brosnihan KB, Hodgin JB, Smithies O, Maeda N, Gallagher P (2008) Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Exp Physiol 93(5):658–664. https://doi.org/10.1113/expphysiol.2007.041806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH, Fortes ZB, Nigro D (2004) A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res 62(3):587–593. https://doi.org/10.1016/j.cardiores.2004.01.020

    Article  CAS  PubMed  Google Scholar 

  75. Sampson AK, Hilliard LM, Moritz KM, Thomas MC, Tikellis C, Widdop RE, Denton KM (2012) The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent. Am J Physiol Regul Integr Comp Physiol 302(1):R159–165. https://doi.org/10.1152/ajpregu.00256.2011

    Article  CAS  PubMed  Google Scholar 

  76. Xue B, Zhao Y, Johnson AK, Hay M (2008) Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol 295(3):H1025–H1032. https://doi.org/10.1152/ajpheart.00021.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xue B, Pamidimukkala J, Lubahn DB, Hay M (2007) Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol 292(4):H1770–1776. https://doi.org/10.1152/ajpheart.01011.2005

    Article  CAS  PubMed  Google Scholar 

  78. Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK (2014) Estrogen regulation of the brain renin–angiotensin system in protection against angiotensin II-induced sensitization of hypertension. Am J Physiol Heart Circ Physiol 307(2):H191–198. https://doi.org/10.1152/ajpheart.01012.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bundalo MM, Zivkovic MD, Romic S, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD (2016) Fructose-rich diet induces gender-specific changes in expression of the renin–angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 17(2):1470320316642915. https://doi.org/10.1177/1470320316642915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramirez LA, Sullivan JC (2018) Sex differences in hypertension: where we have been and where we are going. Am J Hypertens 31(12):1247–1254. https://doi.org/10.1093/ajh/hpy148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cohall DH, Scantlebury-Manning T, James S, Hall K, Ferrario CM (2015) Renin–angiotensin–aldosterone system gender differences in an Afro-Caribbean population. J Renin Angiotensin Aldosterone Syst 16(3):539–546. https://doi.org/10.1177/1470320314523659

    Article  CAS  PubMed  Google Scholar 

  82. Reyes-Engel A, Morcillo L, Aranda FJ, Ruiz M, Gaitan MJ, Mayor-Olea A, Aranda P, Ferrario CM (2006) Influence of gender and genetic variability on plasma angiotensin peptides. J Renin Angiotensin Aldosterone Syst 7(2):92–97. https://doi.org/10.3317/jraas.2006.015

    Article  CAS  PubMed  Google Scholar 

  83. Chappell MC, Marshall AC, Alzayadneh EM, Shaltout HA, Diz DI (2014) Update on the Angiotensin converting enzyme 2-Angiotensin (1-7)–MAS receptor axis: fetal programing, sex differences, and intracellular pathways. Front Endocrinol (Lausanne) 4:201. https://doi.org/10.3389/fendo.2013.00201

    Article  Google Scholar 

  84. Taylor LE, Sullivan JC (2016) Sex differences in obesity-induced hypertension and vascular dysfunction: a protective role for estrogen in adipose tissue inflammation? Am J Physiol Regul Integr Comp Physiol 311(4):R714–R720. https://doi.org/10.1152/ajpregu.00202.2016

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xue B, Zhang Z, Johnson RF, Guo F, Hay M, Johnson AK (2013) Central endogenous angiotensin-(1–7) protects against aldosterone/NaCl-induced hypertension in female rats. Am J Physiol Heart Circ Physiol 305(5):H699–705. https://doi.org/10.1152/ajpheart.00193.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shoemaker R, Tannock LR, Su W, Gong M, Gurley SB, Thatcher SE, Yiannikouris F, Ensor CM, Cassis LA (2019) Adipocyte deficiency of ACE2 increases systolic blood pressures of obese female C57BL/6 mice. Biol Sex Differ 10(1):45. https://doi.org/10.1186/s13293-019-0260-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen YY, Zhang P, Zhou XM, Liu D, Zhong JC, Zhang CJ, Jin LJ, Yu HM (2018) Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther 43(2):189–195. https://doi.org/10.1111/jcpt.12625

    Article  CAS  PubMed  Google Scholar 

  88. Walther T, Wessel N, Kang N, Sander A, Tschope C, Malberg H, Bader M, Voss A (2000) Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene. Braz J Med Biol Res 33(1):1–9. https://doi.org/10.1590/s0100-879x2000000100001

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Shoemaker R, Powell D, Su W, Thatcher S, Cassis L (2017) Differential effects of Mas receptor deficiency on cardiac function and blood pressure in obese male and female mice. Am J Physiol Heart Circ Physiol 312(3):H459–H468. https://doi.org/10.1152/ajpheart.00498.2016

    Article  PubMed  Google Scholar 

  90. Hilliard LM, Mirabito KM, Denton KM (2013) Unmasking the potential of the angiotensin AT2 receptor as a therapeutic target in hypertension in men and women: what we know and what we still need to find out. Clin Exp Pharmacol Physiol 40(8):542–550. https://doi.org/10.1111/1440-1681.12067

    Article  CAS  PubMed  Google Scholar 

  91. Prabhushankar R, Krueger C, Manrique C (2014) Membrane estrogen receptors: their role in blood pressure regulation and cardiovascular disease. Curr Hypertens Rep 16(1):408. https://doi.org/10.1007/s11906-013-0408-6

    Article  CAS  PubMed  Google Scholar 

  92. Robinet P, Milewicz DM, Cassis LA, Leeper NJ, Lu HS, Smith JD (2018) Consideration of sex differences in design and reporting of experimental arterial pathology studies-statement from ATVB council. Arterioscler Thromb Vasc Biol 38(2):292–303. https://doi.org/10.1161/ATVBAHA.117.309524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Henriques T, Zhang X, Yiannikouris FB, Daugherty A, Cassis LA (2008) Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 28(7):1251–1256. https://doi.org/10.1161/ATVBAHA.107.160382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lo RC, Schermerhorn ML (2016) Abdominal aortic aneurysms in women. J Vasc Surg 63(3):839–844. https://doi.org/10.1016/j.jvs.2015.10.087

    Article  PubMed  Google Scholar 

  95. Thatcher SE, Zhang X, Woody S, Wang Y, Alsiraj Y, Charnigo R, Daugherty A, Cassis LA (2015) Exogenous 17-beta estradiol administration blunts progression of established angiotensin II-induced abdominal aortic aneurysms in female ovariectomized mice. Biol Sex Differ 6:12. https://doi.org/10.1186/s13293-015-0030-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daugherty A, Manning MW, Cassis LA (2001) Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 134(4):865–870. https://doi.org/10.1038/sj.bjp.0704331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li W, Li J, Hao P, Chen W, Meng X, Li H, Zhang Y, Zhang C, Yang J (2016) Imbalance between angiotensin II and angiotensin-(1-7) in human coronary atherosclerosis. J Renin Angiotensin Aldosterone Syst. https://doi.org/10.1177/1470320316659618

    Article  PubMed  PubMed Central  Google Scholar 

  98. Thatcher SE, Zhang X, Howatt DA, Yiannikouris F, Gurley SB, Ennis T, Curci JA, Daugherty A, Cassis LA (2014) Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 34(12):2617–2623. https://doi.org/10.1161/ATVBAHA.114.304613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stegbauer J, Thatcher SE, Yang G, Bottermann K, Rump LC, Daugherty A, Cassis LA (2019) Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. J Vasc Surg 70(5):1658–1668.e1. https://doi.org/10.1016/j.jvs.2018.11.045

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bihl JC, Zhang C, Zhao Y, Xiao X, Ma X, Chen Y, Chen S, Zhao B, Chen Y (2015) Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: role of the NFsmall ka, CyrillicB inflammatory pathway. Vascul Pharmacol 73:115–123. https://doi.org/10.1016/j.vph.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63(3):423–432. https://doi.org/10.1016/j.cardiores.2004.04.030

    Article  CAS  PubMed  Google Scholar 

  102. Keller KM, Howlett SE (2016) Sex differences in the biology and pathology of the aging heart. Can J Cardiol 32(9):1065–1073. https://doi.org/10.1016/j.cjca.2016.03.017

    Article  PubMed  Google Scholar 

  103. Mathieu S, El Khoury N, Rivard K, Paradis P, Nemer M, Fiset C (2018) Angiotensin II overstimulation leads to an increased susceptibility to dilated cardiomyopathy and higher mortality in female mice. Sci Rep 8(1):952. https://doi.org/10.1038/s41598-018-19436-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kratky V, Kikerlova S, Huskova Z, Sadowski J, Kolar F, Cervenka L (2019) Enhanced renal vascular responsiveness to angiotensin II and Norepinephrine: a unique feature of female rats with congestive heart failure. Kidney Blood Press Res 44(5):1128–1141. https://doi.org/10.1159/000502379

    Article  CAS  PubMed  Google Scholar 

  105. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348(20):2007–2018. https://doi.org/10.1056/NEJMra021498

    Article  PubMed  Google Scholar 

  106. Aurigemma GP, Silver KH, McLaughlin M, Mauser J, Gaasch WH (1994) Impact of chamber geometry and gender on left ventricular systolic function in patients > 60 years of age with aortic stenosis. Am J Cardiol 74(8):794–798. https://doi.org/10.1016/0002-9149(94)90437-5

    Article  CAS  PubMed  Google Scholar 

  107. Cramariuc D, Rogge BP, Lonnebakken MT, Boman K, Bahlmann E, Gohlke-Barwolf C, Chambers JB, Pedersen TR, Gerdts E (2015) Sex differences in cardiovascular outcome during progression of aortic valve stenosis. Heart 101(3):209–214. https://doi.org/10.1136/heartjnl-2014-306078

    Article  CAS  PubMed  Google Scholar 

  108. Olivetti G, Melissari M, Capasso JM, Anversa P (1991) Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 68(6):1560–1568. https://doi.org/10.1161/01.res.68.6.1560

    Article  CAS  PubMed  Google Scholar 

  109. Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, Devereux RB (2008) Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension 51(4):1109–1114. https://doi.org/10.1161/HYPERTENSIONAHA.107.107474

    Article  CAS  PubMed  Google Scholar 

  110. Hudson M, Rahme E, Behlouli H, Sheppard R, Pilote L (2007) Sex differences in the effectiveness of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in patients with congestive heart failure–a population study. Eur J Heart Fail 9(6–7):602–609. https://doi.org/10.1016/j.ejheart.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  111. Ferreira AJ, Jacoby BA, Araujo CA, Macedo FA, Silva GA, Almeida AP, Caliari MV, Santos RA (2007) The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol 292(2):H1113–1119. https://doi.org/10.1152/ajpheart.00828.2006

    Article  CAS  PubMed  Google Scholar 

  112. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol 292(2):H736–742. https://doi.org/10.1152/ajpheart.00937.2006

    Article  CAS  PubMed  Google Scholar 

  113. Yamamoto K, Ohishi M, Katsuya T, Ito N, Ikushima M, Kaibe M, Tatara Y, Shiota A, Sugano S, Takeda S, Rakugi H, Ogihara T (2006) Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension 47(4):718–726. https://doi.org/10.1161/01.HYP.0000205833.89478.5b

    Article  CAS  PubMed  Google Scholar 

  114. Wang J, Li N, Gao F, Song R, Zhu S, Geng Z (2015) Balance between angiotensin converting enzyme and angiotensin converting enzyme 2 in patients with chronic heart failure. J Renin Angiotensin Aldosterone Syst 16(3):553–558. https://doi.org/10.1177/1470320315576257

    Article  CAS  PubMed  Google Scholar 

  115. Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng LL, Dickstein K, Lang CC, Filippatos G, Anker SD, Ponikowski P, Metra M, van Veldhuisen DJ, Voors AA (2020) Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin-aldosterone inhibitors. Eur Heart J 41(19):1810–1817. https://doi.org/10.1093/eurheartj/ehaa373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mosca L, Barrett-Connor E, Wenger NK (2011) Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124(19):2145–2154. https://doi.org/10.1161/CIRCULATIONAHA.110.968792

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rabi DM, Khan N, Vallee M, Hladunewich MA, Tobe SW, Pilote L (2008) Reporting on sex-based analysis in clinical trials of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker efficacy. Can J Cardiol 24(6):491–496. https://doi.org/10.1016/s0828-282x(08)70624-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sullivan JC (2008) Sex and the renin–angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 294(4):R1220–1226. https://doi.org/10.1152/ajpregu.00864.2007

    Article  CAS  PubMed  Google Scholar 

  119. Kostis WJ, Shetty M, Chowdhury YS, Kostis JB (2018) ACE inhibitor-induced angioedema: a review. Curr Hypertens Rep 20(7):55. https://doi.org/10.1007/s11906-018-0859-x

    Article  CAS  PubMed  Google Scholar 

  120. Song JJ, Ma Z, Wang J, Chen LX, Zhong JC (2020) Gender differences in hypertension. J Cardiovasc Transl Res 13(1):47–54. https://doi.org/10.1007/s12265-019-09888-z

    Article  PubMed  Google Scholar 

  121. Miller JA, Cherney DZ, Duncan JA, Lai V, Burns KD, Kennedy CR, Zimpelmann J, Gao W, Cattran DC, Scholey JW (2006) Gender differences in the renal response to renin–angiotensin system blockade. J Am Soc Nephrol 17(9):2554–2560. https://doi.org/10.1681/ASN.2005101095

    Article  CAS  PubMed  Google Scholar 

  122. Wang H, Chen H (2016) Gender difference in the response to valsartan/amlodipine single-pill combination in essential hypertension (China Status II): an observational study. J Renin Angiotensin Aldosterone Syst 17(2):1470320316643903. https://doi.org/10.1177/1470320316643903

    Article  PubMed  PubMed Central  Google Scholar 

  123. Calhoun DA, Sharma K (2010) The role of aldosteronism in causing obesity-related cardiovascular risk. Cardiol Clin 28(3):517–527. https://doi.org/10.1016/j.ccl.2010.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  124. Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ (1999) Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res 7(4):355–362. https://doi.org/10.1002/j.1550-8528.1999.tb00418.x

    Article  CAS  PubMed  Google Scholar 

  125. Shukri MZ, Tan JW, Manosroi W, Pojoga LH, Rivera A, Williams JS, Seely EW, Adler GK, Jaffe IZ, Karas RH, Williams GH, Romero JR (2018) Biological sex modulates the adrenal and blood pressure responses to angiotensin II. Hypertension 71(6):1083–1090. https://doi.org/10.1161/HYPERTENSIONAHA.117.11087

    Article  CAS  PubMed  Google Scholar 

  126. Bangalore S, Kumar S, Messerli FH (2010) Angiotensin-converting enzyme inhibitor associated cough: deceptive information from the Physicians’ Desk Reference. Am J Med 123(11):1016–1030. https://doi.org/10.1016/j.amjmed.2010.06.014

    Article  PubMed  Google Scholar 

  127. Loloi J, Miller AJ, Bingaman SS, Silberman Y, Arnold AC (2018) Angiotensin-(1-7) contributes to insulin-sensitizing effects of angiotensin-converting enzyme inhibition in obese mice. Am J Physiol Endocrinol Metab 315(6):E1204–E1211. https://doi.org/10.1152/ajpendo.00281.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schuchard J, Winkler M, Stolting I, Schuster F, Vogt FM, Barkhausen J, Thorns C, Santos RA, Bader M, Raasch W (2015) Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/Mas-dependent pathway. Br J Pharmacol 172(15):3764–3778. https://doi.org/10.1111/bph.13172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Benter IF, Yousif MH, Anim JT, Cojocel C, Diz DI (2006) Angiotensin-(1-7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol 290(2):H684–691. https://doi.org/10.1152/ajpheart.00632.2005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ACA is supported by NIH Grants R00HL122507 and UL1TR002014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy C. Arnold.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, D., Mehay, D. & Arnold, A.C. Sex differences in cardiovascular actions of the renin–angiotensin system. Clin Auton Res 30, 393–408 (2020). https://doi.org/10.1007/s10286-020-00720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-020-00720-2

Keywords

Navigation