Skip to main content
Log in

Graphdiyne (CnH2n-2) as an “electron transfer bridge” boosting photocatalytic hydrogen evolution over Zn0.5Co0.5S/MoS2 S-scheme heterojunction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the process of photocatalytic water cracking, the migration rate and utilization rate of photogenerated charges determine the hydrogen evolution performance of the catalyst. In this paper, a carbon isotope superconducting material graphdiyne (GDY) is prepared by mechanical ball milling and introduced into the S-scheme heterojunction Zn0.5Co0.5S/MoS2 inorganic system. In terms of hydrogen evolution kinetics, GDY acts as an electron bridge, not only accelerating the migration of photogenerated carriers but also improving the utilization of photogenerated charges. Morphologically, the large two-dimensional layer provides more loading and anchoring points for Zn0.5Co0.5S/MoS2, which increases the number of active sites. The ternary composite catalyst 20%GDY/Zn0.5Co0.5S/Mo2S (20-GCSM) generates 69.94 μmol of hydrogen (5 h) in triethanolamine solution. It is 2.97 and 1.80 times higher than Zn0.5Co0.5S and Zn0.5Co0.5S/MoS2, respectively. After the cyclic experiment, it still has stable hydrogen evolution performance after standing for 24 h (under dark conditions). In addition, the potential mechanism of photocatalytic hydrogen evolution is demonstrated through in-situ X-ray photoelectron spectroscopy. This work provides a reference for further research in the field of introducing carbon materials into photocatalytic systems and improving the utilization of photogenerated charges.

Graphical abstract

摘要

在光催化分解水中,光生电荷的分离和迁移决定了催化剂的析氢性能。本研究通过机械球磨制备了石墨炔(GDY)并构建了S型异质结Zn0.5Co0.5S/MoS2。GDY起到电子传递转移通道的作用,加速了光生载流子的迁移,提高了光生电荷的利用率。2D层为Zn0.5Co0.5S/MoS2提供了更多的活性负载和锚定点,有效增加了析氢活性位点。三元复合催化剂5小时产氢达69.94 µmol,分别是Zn0.5Co0.5S和Zn0.5Co0.5 S/MoS2的2.97和1.80倍且稳定性尚好。通过原位XPS辅助推测了光催化析氢的潜在机理。该工作为将石墨炔光催化产氢的研究进行了有益的探索。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou PY, Hai GT, Zhao GC, Li RS, Huang XB, Lu YF, Wang G. CeO2 as an “electron pump” to boost the performance of Co4N in electrocatalytic hydrogen evolution, oxygen evolution and biomass oxidation valorization. Appl Catal B. 2023;325: 122364. https://doi.org/10.1016/j.apcatb.2023.122364.

    Article  CAS  Google Scholar 

  2. Sui JY, Chen ZN, Wang C, Wang YY, Liu JH, Li WJ. Efficient hydrogen production from solar energy and fossil fuel via water-electrolysis and methane-steam-reforming hybridization. Appl Energy. 2020;276(15):115409. https://doi.org/10.1016/j.apenergy.2020.115409.

    Article  CAS  Google Scholar 

  3. Sajjad S, Wang C, Deng CW, Ji F, Ali T, Shezad B, Ji HQ, Yan CL. Unravelling critical role of metal cation engineering in boosting hydrogen evolution reaction activity of molybdenum diselenide. Rare Met. 2022;41(12):4127. https://doi.org/10.1007/s12598-022-02104-z.

    Article  CAS  Google Scholar 

  4. Li M, Wang JZ, Jin ZL. In situ X-ray photoelectron spectroscopy (XPS) demonstrated graphdiyne (g-CnH2n-2) based GDY-CuI/NiV-LDH double S-Scheme heterojunction for efficient photocatalytic hydrogen evolution. Energy Fuels. 2023;37(7):5399. https://doi.org/10.1021/acs.energyfuels.3c00011.

    Article  CAS  Google Scholar 

  5. Cheng L, Zhang DN, Liao YL, Fan JJ, Xiang QJ. Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction. Chin J Catal. 2021;42(1):131. https://doi.org/10.1016/s1872-2067(20)63623-3.

    Article  CAS  Google Scholar 

  6. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  7. Zhang KL, Zhou M, Yang K, Yu CL, Mu P, Yu ZZ, Lu KQ, Huang WY, Dai WX. Photocatalytic H2O2 production and removal of Cr (VI) via a novel Lu3NbO7: Yb, Ho/CQDs/AgInS2/In2S3 heterostructure with broad spectral response. J Hazard Mater. 2022;423:127172. https://doi.org/10.1016/j.jhazmat.2021.127172.

    Article  CAS  PubMed  Google Scholar 

  8. Yan R, Zada A, Sun L, Li ZJ, Mu ZY, Chen SY, Yang F, Sun JH, Bai LL, Qu Y, Jing LQ. Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Met. 2022;41(1):155. https://doi.org/10.1007/s12598-021-01857-3.

    Article  CAS  Google Scholar 

  9. Meng LY, Qu Y, Jing LQ. Recent advances in BiOBr-based photocatalysts for environmental remediation. Chin Chem Lett. 2021;32(11):3265. https://doi.org/10.1016/j.cclet.2021.03.083.

    Article  CAS  Google Scholar 

  10. Cheng L, Li BH, Yin H, Fan JJ, Xiang QJ. Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction. J Mater Sci Technol. 2022;118:54. https://doi.org/10.1016/j.jmst.2021.11.055.

    Article  CAS  Google Scholar 

  11. Li CQ, Du X, Jiang S, Liu Y, Niu ZL, Liu ZY, Yi SS, Yue XZ. Constructing direct Z-scheme heterostructure by enwrapping ZnIn2S4 on CdS hollow cube for efficient photocatalytic H2 generation. Adv Sci. 2022;9(24):2201773. https://doi.org/10.1002/advs.202201773.

    Article  CAS  Google Scholar 

  12. Yan YX, Wang F, Xia WZ, Zheng S, Xiong LQ, Xiao ZW. First principles study of photoelectric properties of anatase TiO2 with intrinsic defects. Chin. J Rare Met. 2022;46(2):195. https://doi.org/10.13373/j.cnki.cjrm.XY20070018.

    Article  Google Scholar 

  13. Xiang QJ, Cheng FY, Lang D. Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. Chemsuschem. 2016;9(9):996. https://doi.org/10.1002/cssc.201501702.

    Article  CAS  PubMed  Google Scholar 

  14. Xu QL, Zhu BC, Cheng B, Yu JG, Zhou MH, Ho WK. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites. Appl Catal B. 2019;255:117770. https://doi.org/10.1016/j.apcatb.2019.117770.

    Article  CAS  Google Scholar 

  15. Huang CS, Li YY, Wang N, Xue YR, Zuo ZC, Liu HB, Li YL. Progress in research into 2D graphdiyne-based materials. Chem Rev. 2018;118(16):7744. https://doi.org/10.1021/acs.chemrev.8b00288.

    Article  CAS  PubMed  Google Scholar 

  16. Yu HD, Xue YR, Hui L, Zhang C, Li YJ, Zuo ZC, Zhao YJ, Li ZB, Li YL. Efficient hydrogen production on a 3D flexible heterojunction material. Adv Mater. 2018;30(21):1707082. https://doi.org/10.1002/adma.201707082.

    Article  CAS  Google Scholar 

  17. Panigrahi P, Dhinakaran AK, Naqvi SR, Gollu SR, Ahuja R, Hussain T. Light metal decorated graphdiyne nanosheets for reversible hydrogen storage. Nanotechnology. 2018;29(35): 355401. https://doi.org/10.1088/1361-6528/aac84c.

    Article  CAS  PubMed  Google Scholar 

  18. Li JQ, Yi YY, Zuo XT, Hu BB, Xiao ZH, Lian RQ, Kong Y, Tong LM, Shao RW, Sun JY, Zhang J. Graphdiyne/graphene/graphdiyne sandwiched carbonaceous anode for potassium-ion batteries. ACS Nano. 2022;16(2):3163. https://doi.org/10.1021/acsnano.1c10857.

    Article  CAS  PubMed  Google Scholar 

  19. Li YB, Jin ZL, Zhao TS. Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2020;382:123051. https://doi.org/10.1016/j.cej.2019.123051.

    Article  CAS  Google Scholar 

  20. Zheng Y, Qiao SZ. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Natl Sci Rev. 2018;5(5):626. https://doi.org/10.1093/nsr/nwy010.

    Article  CAS  Google Scholar 

  21. Cheng NY, Ren L, Xu X, Du Y, Dou SX. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv Energy Mater. 2018;8(25):1801257. https://doi.org/10.1002/aenm.201801257.

    Article  CAS  Google Scholar 

  22. Hanif S, Shi X, Iqbal N, Noor T, Anwar R. Kannan AM ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell. Appl Catal B. 2019;258:117947. https://doi.org/10.1016/j.apcatb.2019.117947.

    Article  CAS  Google Scholar 

  23. Kukkar P, Kim KH, Kukkar D, Singh P. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications. Coord Chem Rev. 2021;446: 214109. https://doi.org/10.1016/j.ccr.2021.214109.

    Article  CAS  Google Scholar 

  24. Khandelwal G, Chandrasekhar A, Maria Joseph Raj NP, Kim SJ. ZIF-8 energy harvester: metal-organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv Energy Mater. 2019;9(14):1970043. https://doi.org/10.1002/aenm.201970043.

    Article  CAS  Google Scholar 

  25. Sun HC, Li Y, Yu SJ, Liu JQ. Metal-organic frameworks (MOFs) for biopreservation: from biomacromolecules, living organisms to biological devices. Nano Today. 2020;35: 100985. https://doi.org/10.1016/j.nantod.2020.100985.

    Article  CAS  Google Scholar 

  26. Bieniek A, Terzyk AP, Wiśniewski M, Roszek K, Kowalczyk P, Sarkisov L, Keskin S, Keskin K. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Prog Mater Sci. 2021;117: 100743. https://doi.org/10.1016/j.pmatsci.2020.100743.

    Article  CAS  Google Scholar 

  27. Li L, Wang XS, Liu TF, Ye JH. Titanium-based MOF materials: from crystal engineering to photocatalysis. Small Methods. 2020;4(12):2000486. https://doi.org/10.1002/smtd.202000486.

    Article  CAS  Google Scholar 

  28. Cheng J, Yang X, Yang X, Xia RX, Xu Y, Sun WF, Zhou JH. Hierarchical Ni3S2@ 2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution. Fuel Process Technol. 2022;229:107174. https://doi.org/10.1016/j.fuproc.2022.107174.

    Article  CAS  Google Scholar 

  29. Li X, Liu SW, Fan K, Liu ZQ, Song B, Yu JG. MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater. 2018;8(18):1800101. https://doi.org/10.1002/aenm.201800101.

    Article  CAS  Google Scholar 

  30. Feng C, Chen ZY, Hou J, Li JR, Li XB, Xu LK, Sun MX, Zeng RC. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem Eng J. 2018;345:404. https://doi.org/10.1016/j.cej.2018.03.155.

    Article  CAS  Google Scholar 

  31. Xu WY, Li H, Xu JB, Wang L. Recent advances of solution-processed metal oxide thin-film transistors. ACS Appl Mater Interfaces. 2018;10(31):25878. https://doi.org/10.1021/acsami.7b16010.

    Article  CAS  PubMed  Google Scholar 

  32. Wang YZ, Shan XY, Wang DW, Sun ZH, Cheng HM, Li F. A rechargeable quasi-symmetrical MoS2 battery. Joule. 2018;2(7):1278. https://doi.org/10.1016/j.joule.2018.04.007.

    Article  CAS  Google Scholar 

  33. Yue LG, Wang X, Sun TT, Liu H, Li Q, Wu N, Guo H, Yang W. Ni-MOF coating MoS2 structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors. Chem Eng J. 2019;375:121959. https://doi.org/10.1016/j.cej.2019.121959.

    Article  CAS  Google Scholar 

  34. Mu P, Zhou M, Yang K, Chen X, Yu ZZ, Lu KQ, Huang WY, Yu CL, Dai WX. Cd0.5Zn0.5S/CoWO4 nanohybrids with a twinning homojunction and an interfacial S-scheme heterojunction for efficient visible-light-induced photocatalytic CO2 reduction. Inorg Chem. 2021;60(19):14854. https://doi.org/10.1021/acs.inorgchem.1c02146.

    Article  CAS  PubMed  Google Scholar 

  35. Li F, Cheng L, Fan JJ, Xiang QJ. Steering the behavior of photogenerated carriers in semiconductor photocatalysts: a new insight and perspective. J Mater Chem A. 2021;9(42):23765. https://doi.org/10.1039/d1ta06899g.

    Article  CAS  Google Scholar 

  36. Hu DH, Song T, Zada A, Yan R, Li ZJ, Zhang ZQ, Bian J, Qu Y, Jing LQ. Graphene oxide modulated dual S-scheme ultrathin heterojunctions with iron phthalocyanine and phase-mixed bismuth molybdate as wide visible-light catalysts. Environ Sci Nano. 2023;10(3):922. https://doi.org/10.1039/d2en01148d.

    Article  CAS  Google Scholar 

  37. Gao RQ, He H, Bai JX, Hao L, Shen RC, Zhang P, Li YJ, Li X. Pyrene-benzothiadiazole-based polymer/CdS 2D/2D organic/inorganic hybrid S-scheme heterojunction for efficient photocatalytic H2 evolution. Chin J Struct Chem. 2022;41(6):2206031. https://doi.org/10.14102/j.cnki.0254-5861.2022-0096.

    Article  CAS  Google Scholar 

  38. Yang T, Deng PK, Wang LL, Hu J, Liu QQ, Tang H. Simultaneous photocatalytic oxygen production and hexavalent chromium reduction in Ag3PO4/C3N4 S-scheme heterojunction. Chin J Struct Chem. 2022;41(6):23. https://doi.org/10.14102/j.cnki.0254-5861.2022-0062.

    Article  CAS  Google Scholar 

  39. Bai JX, Shen RC, Jiang ZM, Zhang P, Li Y, Li X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation. Chin J Catal. 2022;43(2):359. https://doi.org/10.1016/s1872-2067(21)63883-4.

    Article  CAS  Google Scholar 

  40. Huang Y, Mei FF, Zhang JF, Dai K, Dawson G. Construction of 1D/2D W18O49/porous g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2 evolution. Acta Phys Chim Sin. 2022;38(7):2108028. https://doi.org/10.3866/PKU.WHXB202108028.

    Article  CAS  Google Scholar 

  41. Mao Q, Chen JM, Chen HR, Chen ZJ, Chen JY, Li YW. Few-layered 1T-MoS2-modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution. J Mater Chem A. 2019;7(14):8472. https://doi.org/10.1039/c8ta12526k.

    Article  CAS  Google Scholar 

  42. Zheng ZQ, Xue YR, Li YX. A new carbon allotrope: graphdiyne. Trends Chem. 2022;4(8):754. https://doi.org/10.1016/j.trechm.2022.05.006.

    Article  CAS  Google Scholar 

  43. Jin ZL, Wu YL. Novel preparation strategy of graphdiyne (CnH2n-2): one-pot conjugation and S-scheme heterojunctions formed with MoP characterized with in situ XPS for efficiently photocatalytic hydrogen evolution. Appl Catal B. 2023;327: 122461. https://doi.org/10.1016/j.apcatb.2023.122461.

    Article  CAS  Google Scholar 

  44. Wang P, Li HT, Cao YJ, Yu HG. Carboxyl-functionalized graphene for highly efficient H2-evolution activity of TiO2 photocatalyst. Acta Phys Chim Sin. 2021;37(6):2008047. https://doi.org/10.3866/PKU.WHXB202008047.

    Article  CAS  Google Scholar 

  45. Li T, Jin ZL. Rationally engineered active sites for efficient and durable hydrogen production over γ-graphyne assembly CuMoO4 S-scheme heterojunction. J Catal. 2023;417:274. https://doi.org/10.1016/j.jcat.2022.12.011.

    Article  CAS  Google Scholar 

  46. Yan T, Zhang XJ, Liu H, Jin ZL. CeO2 particles anchored to Ni2P nanoplate for efficient photocatalytic hydrogen evolution. Chin J Struct Chem. 2022;41:2201047. https://doi.org/10.14102/j.cnki.0254-5861.2021-0057.

    Article  CAS  Google Scholar 

  47. Jin ZL, Li HY, Li JK. Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction. Chin J Catal. 2022;43(2):303. https://doi.org/10.1016/s1872-2067(21)63818-4.

    Article  CAS  Google Scholar 

  48. Zhang LJ, Hao XQ, Li JK, Wang YP, Jin ZL. Unique synergistic effects of ZIF-9 (Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chin J Catal. 2020;41(1):82. https://doi.org/10.1016/s1872-2067(19)63454-6.

    Article  CAS  Google Scholar 

  49. Jiang ZM, Chen Q, Zheng QQ, Shen RC, Zhang P, Li X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys-Chim Sin. 2021;37(6):2010059. https://doi.org/10.3866/PKU.WHXB202010059.

    Article  CAS  Google Scholar 

  50. Chen P, Liu F, Ding HZ, Chen S, Chen L, Li YJ, Au CT, Yin SF. Porous double-shell CdS@ C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl Catal B. 2019;252:33. https://doi.org/10.1016/j.apcatb.2019.04.006.

    Article  CAS  Google Scholar 

  51. Li HY, Gong HM, Jin ZL. In2O3-modified three-dimensional nanoflower MoSx form S-scheme heterojunction for efficient hydrogen production. Acta Phys Chim Sin. 2022;38:2201037. https://doi.org/10.3866/PKU.WHXB202201037.

    Article  CAS  Google Scholar 

  52. Tang NM, Li YJ, Chen FT, Han ZY. In situ fabrication of a direct Z-scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light. RSC Adv. 2018;8(73):42233. https://doi.org/10.1039/c8ra08008a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu SC, Wang K, Yang MX, Jin ZL. Rationally designed Mn0.2Cd0.8S@ CoAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Acta Phys-Chim Sin. 2022;38(7):2109023. https://doi.org/10.1016/j.apsusc.2022.154174.

    Article  CAS  Google Scholar 

  54. Jin ZL, Li YB, Hao XQ. Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution. Acta Phys Chim Sin. 2021;37(10):1912033. https://doi.org/10.3866/PKU.WHXB201912033.

    Article  CAS  Google Scholar 

  55. Lin X, Du SW, Li CH, Li GJ, Li YJ, Chen FT, Fang PF. Consciously constructing the robust NiS/gC3N4 hybrids for enhanced photocatalytic hydrogen evolution. Catal Lett. 2020;150:1898. https://doi.org/10.1007/s10562-020-03118-x.

    Article  CAS  Google Scholar 

  56. Li JK, Li M, Li YJ, Guo X, Jin ZL. Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution. Sep Purif Technol. 2022;288: 120588. https://doi.org/10.1016/j.seppur.2022.120588.

    Article  CAS  Google Scholar 

  57. Ma XW, Lin HF, Li YY, Wang L, Pu XP, Yi XJ. Dramatically enhanced visible-light-responsive H2 evolution of Cd1-xZnxS via the synergistic effect of Ni2P and 1T/2H MoS2 cocatalysts. Chin J Struct Chem. 2021;40(1):7. https://doi.org/10.14102/j.cnki.0254-5861.2011-2752.

    Article  CAS  Google Scholar 

  58. Wang GR, Quan YK, Yang KC, Jin ZL. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution. J Mater Sci Technol. 2022;121:28. https://doi.org/10.1016/j.jmst.2021.11.073.

    Article  CAS  Google Scholar 

  59. Wang XY, Jin ZL. A novel graphdiyne (CnH2n-2) preparation strategy: calcium carbide-derived graphdiyne film supported cobalt tetroxide nanoneedles for photocatalytic hydrogen production. J Mater Chem A. 2022;10(43):23134. https://doi.org/10.1039/d2ta06752h.

    Article  CAS  Google Scholar 

  60. Li YB, Jin ZL, Zhang LJ, Fan K. Controllable design of Zn–Ni–P on g-C3N4 for efficient photocatalytic hydrogen production. Chin J Catal. 2019;40(3):390. https://doi.org/10.1016/s1872-2067(18)63173-0.

    Article  CAS  Google Scholar 

  61. Cao Y, Gou HQ, Zhu PF, Jin ZL. Ingenious design of CoAl-LDH pn heterojunction based on Cul as holes receptor for photocatalytic hydrogen evolution. Chin J Struct Chem. 2022;41(6):79. https://doi.org/10.14102/j.cnki.0254-5861.2022-0042.

    Article  CAS  Google Scholar 

  62. Liu Y, Hao XQ, Hu HQ, Jin ZL. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys Chim Sin. 2021;37(6):2008030. https://doi.org/10.3866/PKU.WHXB202008030.

    Article  CAS  Google Scholar 

  63. Wang XP, Li T, Zhu PF, Jin ZL. Synergistic effect of the MoO2/CeO2 S-scheme heterojunction on carbon rods for enhanced photocatalytic hydrogen evolution. Dalton Trans. 2022;51(7):2912. https://doi.org/10.1039/d1dt03605j.

    Article  CAS  PubMed  Google Scholar 

  64. Wang T, Jin ZL. Graphdiyne (CnH2n-2) based CuI-GDY/ZnAl LDH double S-scheme heterojunction proved with in situ XPS for efficient photocatalytic hydrogen production. J Mater Sci Technol. 2023;155:132. https://doi.org/10.1016/j.jmst.2023.03.002.

    Article  CAS  Google Scholar 

  65. Yang MX, Li YJ, Jin ZL. In situ XPS proved graphdiyne (CnH2n-2)-based CoFe LDH/CuI/GD double S-scheme heterojunction photocatalyst for hydrogen evolution. Sep Purif Technol. 2023;311:123229. https://doi.org/10.1016/j.seppur.2023.123229.

    Article  CAS  Google Scholar 

  66. Liu ZK, Jin ZL. Hydrogen production by graphdiyne (CnH2n-2) based graphdiyne/CuI/NiMn (LDHs) double S-scheme heterojunctions. Catal Sci Technol. 2023;13:1074. https://doi.org/10.1039/d2cy01951e.

    Article  CAS  Google Scholar 

  67. Sun YL, Jin D, Sun Y, Meng X, Gao Y, Dall’Agnese Y, Chen G, Wang XF. g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2018;6(19):9124. https://doi.org/10.1039/c8ta02706d.

    Article  CAS  Google Scholar 

  68. Li F, Wang DK, Xing QJ, Zhou G, Liu SS, Li Y, Zheng LL, Ye P, Zou JP. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl Catal B. 2019;243:621. https://doi.org/10.1016/j.apcatb.2018.10.043.

    Article  CAS  Google Scholar 

  69. Xiang DZ, Hao XQ, Guo X, Wang GR, Yang KC, Jin ZL. Rational construction of Z-scheme charge transfer based on 2D graphdiyne (g-CnH2n-2) coupling with amorphous Co3O4 quantum dots for efficient photocatalytic hydrogen generation. Adv Mater Interfaces. 2022;9(27):2201400. https://doi.org/10.1002/admi.202201400.

    Article  CAS  Google Scholar 

  70. Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomäcker R, Thomas A, Schmidt J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc. 2018;140(4):1423. https://doi.org/10.1021/jacs.7b11255.

    Article  CAS  PubMed  Google Scholar 

  71. Quan YK, Wang GR, Wang XP, Guo X, Hao XQ, Wang K, Jin ZL. P-Induced in situ construction of ZnCoMOF@ CoP-5 S-scheme heterojunctions for enhanced photocatalytic H2 evolution. Langmuir. 2022;38(41):12617. https://doi.org/10.1021/acs.langmuir.2c02091.

    Article  CAS  PubMed  Google Scholar 

  72. Liu WW, Pan J, Peng RF. Shape-dependent hydrogen generation performance of PtPd bimetallic co-catalyst coupled with C3N4 photocatalyst. Rare Met. 2021;40(12):3554. https://doi.org/10.1007/s12598-021-01705-4.

    Article  CAS  Google Scholar 

  73. Moon HS, Hsiao KC, Wu MC, Yun YJ, Hsu YJ, Yong KJ. Spatial separation of cocatalysts on Z-Scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H2 evolution and in-depth analysis of the charge-transfer mechanism. Adv Mater. 2023;35(4):2200172. https://doi.org/10.1002/adma.202200172.

    Article  CAS  Google Scholar 

  74. Zeng J, Xu L, Luo X, Chen T, Tang SH, Huang X, Wang LL. Z-scheme systems of ASi2N4 (A = Mo or W) for photocatalytic water splitting and nanogenerators. Tungsten. 2022;4(1):52. https://doi.org/10.1007/s42864-021-00116-3.

    Article  Google Scholar 

  75. Xu C, Zhou Q, Huang WY, Zhang YC, Liang TX, Liu ZQ. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Met. 2022;41(6):2094. https://doi.org/10.1007/s12598-021-01897-9.

    Article  CAS  Google Scholar 

  76. Sun LJ, Su HW, Xu DF, Wang LL, Tang H, Liu QQ. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022;41(6):2063. https://doi.org/10.1007/s12598-021-01936-5.

    Article  CAS  Google Scholar 

  77. Li DJ, Ma XL, Jin ZL. Graphdiyne (g-CnH2n-2) supported organic-inorganic composites with zinc cadmium sulfide for photocatalytic hydrogen evolution. Solar RRL. 2022;6:2200759. https://doi.org/10.1002/solr.202200759.

    Article  CAS  Google Scholar 

  78. Zhang J, Feng XL. Graphdiyne electrocatalyst. Joule. 2018;2(8):1396. https://doi.org/10.1016/j.joule.2018.07.031.

    Article  Google Scholar 

  79. Jia ZY, Li YJ, Zuo ZC, Liu HB, Huang CS, Li YL. Synthesis and properties of 2D carbon-graphdiyne. Acc Chem Res. 2017;50(10):2470. https://doi.org/10.1021/acs.accounts.7b00205.

    Article  CAS  PubMed  Google Scholar 

  80. Fang Y, Liu YX, Qi L, Xue YR, Li YL. 2D graphdiyne: an emerging carbon material. Chem Soc Rev. 2022;51:2681. https://doi.org/10.1039/d1cs00592h.

    Article  CAS  PubMed  Google Scholar 

  81. Gao X, Liu HB, Wang D, Zhang J. Graphdiyne: synthesis, properties, and applications. Chem Soc Rev. 2019;48(3):908. https://doi.org/10.1039/c8cs00773j.

    Article  CAS  PubMed  Google Scholar 

  82. Yuan N, Deng YR, Wang SH, Gao L, Yang JL, Zou NC, Liu BX, Zhang JQ, Liu RP, Zhang L. Towards superior lithium–sulfur batteries with metal–organic frameworks and their derivatives. Tungsten. 2022;4(4):269. https://doi.org/10.1007/s42864-022-00186-x.

    Article  Google Scholar 

  83. Zulfiqar S, Liu S, Rahman N, Tang H, Shah S, Yu XH, Liu QQ. Construction of S-scheme MnO2@ CdS heterojunction with core-shell structure as H2-production photocatalyst. Rare Met. 2021;40:2381. https://doi.org/10.1007/s12598-020-01616-w.

    Article  CAS  Google Scholar 

  84. Dong YH, Ma AQ, Li JY, Li HF, Gao YQ. Preparation of defective g-C3N4 nanosheets by thermal exfoliation and its photocatalytic performance. Chin J Rare Met. 2021;45(1):47. https://doi.org/10.14136/j.cnki.issn1673-2812.2021.06.004.

    Article  CAS  Google Scholar 

  85. Feng YJ, Wang Y, Ma JP, Duan YY, Lu X, Zhou XY, Wang GY, Wang KW, Liu J, Zhang B. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 2022;41:385. https://doi.org/10.1007/s12598-021-01815-z.

    Article  CAS  Google Scholar 

  86. Liu DD, Ding WJ, Liu JJ, Zhang JT. Recent advances in defect chemistry of oxides for photocatalysis applications. Chin J Rare Met. 2021;45(5):583. https://doi.org/10.13373/j.cnki.cjrm.XY20080036.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 22062001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Li or Zhi-Liang Jin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, JZ. & Jin, ZL. Graphdiyne (CnH2n-2) as an “electron transfer bridge” boosting photocatalytic hydrogen evolution over Zn0.5Co0.5S/MoS2 S-scheme heterojunction. Rare Met. 43, 1999–2014 (2024). https://doi.org/10.1007/s12598-023-02539-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02539-y

Keywords

Navigation