Skip to main content

Advertisement

Log in

Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2021

This article has been updated

Abstract

Hydrogen, with the merits of zero emissions and high energy density, is one of the promising green energy sources. Seeking for high efficiency and low-cost catalysts is one of the key issues for hydrogen evolution and its practical applications. Nano-structured metal co-catalysts are widely used to improve the photocatalytic performance via surface electronic structure/properties optimization of the catalyst. Herein, we report ultra-fine (~ 1 nm) Cu clusters decorated hydrangea-like TiO2 systems for photocatalytic hydrogen evolution. The pristine hydrangea-like TiO2 support shows a promising performance of hydrogen evolution (1.8 mmol·h−1·g−1), which is ~ 10.7 times higher than that of the commercial P25 (168 μmol·h−1·g−1). After ultra-fine Cu clusters decoration, a maximal hydrogen evolution performance (3.7 mmol·h−1·g−1) is achieved in the optimized system 6Cu–TiO2 (6 wt%). Experimental and theoretical studies demonstrate that the ultra-fine Cu clusters decoration could promote the charge separation and transfer process effectively. The Cu clusters also act as reaction sites for reduction of H2O to H2. These results are of great importance for the study of Cu-based co-catalyst systems and also shed light on the development of other non-noble metal co-catalysts in photocatalysis hydrogen evolution.

Graphical abstract

摘要

氢能是一种最具前景的绿色能源, 具有零排放和高能量密度等优点。因此, 寻找一种高效且具有低成本的催化剂是产氢领域的关键问题之一, 且有助于光催化产氢技术的工业应用。金属纳米助催化剂可以通过优化催化剂的表面电子结构来提高催化剂的活性。在本篇文章中, 我们报道了铜超小纳米团簇(~ 1 nm)修饰的类绣球花状TiO2催化剂, 将其应用于光催化产氢。结果表明, 类绣球花状TiO2具有良好的产氢性能(1.8 mmol h-1 g-1), 约为商业P25 (168 μmol h-1 g-1)性能的10.7倍。铜超小纳米团簇修饰后, 6Cu-TiO2催化剂(6 wt%)的光催化产氢性能达到最优(3.7 mmol h-1 g-1)。实验和理论研究表明, 铜超小纳米团簇修饰可以有效促进催化剂光生载流子的分离和转移。其次, 铜团簇还可以作为活性反应位点, 将H2O还原为H2。该工作对铜基助催化剂体系的研究具有重要意义, 也为其他非贵金属助催化剂在光催化析氢方面的研究提供了启示。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Green MA, Bremner SP. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat Mater. 2016;16(1):23.

    Article  Google Scholar 

  2. Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics. 2012;6(8):511.

    Article  CAS  Google Scholar 

  3. Zhu JX, Cheng G, Xiong JY, Li WJ, Dou SX. Recent advances in Cu-based cocatalysts toward solar-to-hydrogen evolution: categories and roles. Sol RRL. 2019;3(10):1900256.

    Article  Google Scholar 

  4. Lei Y, Wang Y, Liu Y, Song C, Li Q, Wang D, Li Y. Realizing the atomic active center for hydrogen evolution electrocatalysts. Angew Chem Int Ed. 2020;59(47):20794.

    Article  CAS  Google Scholar 

  5. Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev. 2019;120(2):919.

    Article  Google Scholar 

  6. Takata T, Jiang J, Sakata Y, Nakabayashi M, Shibata N, Nandal V, Seki K, Hisatomi T, Domen K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature. 2020;581(7809):411.

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  CAS  Google Scholar 

  8. Zuo GC, Wang YT, Teo WL, Xian QM, Zhao YL. Direct Z-scheme TiO2–ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl Catal B: Environ. 2021;291:120126.

  9. Sun J, Zhang M, Wang ZF, Chen HY, Chen Y, Murakami N, Ohno T. Synthesis of anatase TiO2 with exposed {001} and {101} facets and photocatalytic activity. Rare Met. 2019;38(4):287.

    Article  CAS  Google Scholar 

  10. Yang DX, Qu D, Miao X, Jiang WS, An L, Wen YJ, Wu DD Sun ZC. TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Met. 2019; 38(5):404.

  11. Zuo G, Wang Y, Teo WL, Xian Q, Zhao Y. Direct Z-scheme TiO2–ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl Catal B: Environ. 2021; 291: 120126.

  12. Wang C, Wang KW, Feng YB, Li C, Zhou XY, Gan LY, Feng YJ, Zhou HJ, Zhang B, Qu XL, Li H, Li JY, Li A, Sun YY, Zhang SB, Yang G, Guo YZ, Yang SZ, Zhou TH, Dong F, Zheng K, Wang LH, Huang J, Zhang Z, Han XD. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv Mater. 2021;33(13):e2003327.

  13. Sadanandam G, Luo X, Chen XX, Bao YW, Homewood KP, Gao Y. Cu oxide quantum dots loaded TiO2 nanosheet photocatalyst for highly efficient and robust hydrogen generation. Appl Surf Sci. 2021; 541:148687.

  14. Li Y, Min KA, Han B, Lee LYS. Ni nanoparticles on active (001) facet-exposed rutile TiO2 nanopyramid arrays for efficient hydrogen evolution. Appl Catal B: Environ. 2021; 282:119548.

  15. Esmat M, El-Hosainy H, Tahawy R, Jevasuwan W, Tsunoji N, Fukata N, Ide Y. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Appl Catal B: Environ. 2021; 285:119755.

  16. Hu X, Song J, Luo J, Zhang H, Sun Z, Li C, Zheng S, Liu Q. Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J Energy Chem. 2021;62:1.

    Article  Google Scholar 

  17. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater. 2019;31(50):1901997.

    Article  CAS  Google Scholar 

  18. Kurnaravel V, Mathew S, Bartlett J, Pillai SC. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B-Environ. 2019;244:1021.

    Article  Google Scholar 

  19. Tabunag JS, Guo YJ, Yu HZ. Interactions between hemin-binding DNA aptamers and hemin–graphene nanosheets: reduced affinity but unperturbed catalytic activity. J Anal Test. 2019;3:107.

    Article  Google Scholar 

  20. Meng A, Zhang L, Cheng B, Yu J. Dual cocatalysts in TiO2 photocatalysis. Adv Mater. 2019;31(30):1807660.

    Article  Google Scholar 

  21. Zuo Q, Liu T, Chen C, Ji Y, Gong X, Mai Y, Zhou Y. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew Chem Int Edit. 2019;58(30):10198.

    Article  CAS  Google Scholar 

  22. Zhou P, Lv F, Li N, Zhang Y, Mu Z, Tang Y, Lai J, Chao Y, Luo M, Lin F, Zhou J, Su D, Guo S. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy. 2019;56:127.

    Article  CAS  Google Scholar 

  23. Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zbořil R, Schmuki P. On the controlled loading of single platinum atoms as a co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv Mater. 2020;32(16):1908505.

    Article  CAS  Google Scholar 

  24. Fang X, Shang Q, Wang Y, Jiao L, Yao T, Li Y, Zhang Q, Luo Y, Jiang HL. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater. 2018;30(7):1705112.

    Article  Google Scholar 

  25. Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater. 2016;28(12):2427.

    Article  CAS  Google Scholar 

  26. Sui Y, Liu S, Li T, Liu Q, Jiang T, Guo Y, Luo JL. Atomically dispersed Pt on specific TiO2 facets for photocatalytic H2 evolution. J Catal. 2017;353:250.

    Article  CAS  Google Scholar 

  27. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981.

    Article  CAS  Google Scholar 

  28. Xing J, Chen JF, Li YH, Yuan WT, Zhou Y, Zheng LR, Wang HF, Hu P, Wang Y, Zhao HJ, Wang Y, Yang HG. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem Eur J. 2014;20(8):2138.

    Article  CAS  Google Scholar 

  29. Yi L, Lan F, Li J, Zhao C. Efficient noble-metal-free Co-NG/TiO2 photocatalyst for H2 evolution: synergistic effect between single-atom Co and N-doped graphene for enhanced photocatalytic activity. ACS Sustain Chem Eng. 2018;6(10):12766.

    Article  CAS  Google Scholar 

  30. Walmsley JD, Hill JW, Saha P, Hill CM. Probing electrocatalytic CO2 reduction at individual Cu nanostructures via optically targeted electrochemical cell microscopy. J Anal Test. 2019;3:140.

    Article  Google Scholar 

  31. Liu W, Cao L, Cheng W, Cao Y, Liu X, Zhang W, Mou X, Jin L, Zheng X, Che W, Liu Q, Yao T, Wei S. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew Chem Int Edit. 2017;56(32):9312.

    Article  CAS  Google Scholar 

  32. Jo WK, Jin YJ. 2D graphene-assisted low-cost metal (Ag, Cu, Fe, or Ni)-doped TiO2 nanowire architectures for enhanced hydrogen generation. J Alloy and Comp. 2018;765:106.

    Article  CAS  Google Scholar 

  33. Xiao M, Zhang L, Luo B, Lyu M, Wang Z, Huang H, Wang S, Du A, Wang L. Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew Chem Int Edit. 2020;132(18):7297.

    Article  Google Scholar 

  34. Jin X, Wang R, Zhang L, Si R, Shen M, Wang M, Tian J, Shi J. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew Chem Int Edit. 2020;132(17):6894.

    Article  Google Scholar 

  35. Naldoni A, Altomare M, Zoppellaro G, Liu N, Kment S, Zboril R, Schmuki P. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019;9(1):345.

    Article  CAS  Google Scholar 

  36. Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. 2018;30(11):1705369.

    Article  Google Scholar 

  37. Gao M, Zhu L, Ong WL, Wang J, Ho GW. Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Cataly Sci Technol. 2015;5(10):4703.

    Article  CAS  Google Scholar 

  38. Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc. 2011;133(4):933.

    Article  CAS  Google Scholar 

  39. Zhu T, Li J, Wu Q. Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl Mater Inter. 2011;3(9):3448.

    Article  CAS  Google Scholar 

  40. Chen Y, Li S, Zhao RY, Li W, Ren ZH, Han GR. Single-crystal TiO2/SrTiO3 core–shell heterostructured nanowire arrays for enhanced photoelectrochemical performance. Rare Met. 2019;38(5):369.

    Article  CAS  Google Scholar 

  41. Yuan L, Han C, Yang MQ, Xu YJ. Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int Rev in Phys Chem. 2016;35(1):1.

    Article  CAS  Google Scholar 

  42. Li R, Li C. Photocatalytic water splitting on semiconductor-based photocatalysts. Adv Catal. 2017;60:1.

    Google Scholar 

  43. Zhu S, Chen XF, Li ZC, Ye XY, Liu Y, Chen Y, Yang L, Chen M, Zhang DQ, Li GS, Li HX. Cooperation between inside and outside of TiO2: lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction. Appl Catal B: Environ. 2020; 264:118515.

  44. Peng M, Dong CY, Gao R, Xiao DQ, Liu H, Ma D. Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency. ACS Central Sci. 2021;7(2):262.

  45. Wang T, Tao X, Li X, Zhang K, Liu S, Li B. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small. 2020;17(2):2006255.

    Article  Google Scholar 

  46. Zhang H, Zhang P, Qiu M, Dong J, Zhang Y, Lou XWD. Ultrasmall MoOx clusters as a novel cocatalyst for photocatalytic hydrogen evolution. Adv Mater. 2019;31(6):1804883.

    Google Scholar 

  47. Yan QQ, Wu DX, Chu SQ, Chen ZQ, Lin Y, Chen MX, Zhang J, Wu XJ, Liang HW. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat Commun. 2019;10(1):1.

  48. Ji S, Chen Y, Fu Q, Chen Y, Dong J, Chen W, Li Z, Wang Y, Gu L, He W, Chen C, Peng Q, Huang Y, Duan X, Wang D, Draxl C, Li Y. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J Am Chem Soc. 2017;139(29):9795.

    Article  CAS  Google Scholar 

  49. Lee BH, Park S, Kim M, Sinha AK, Lee SC, Jung E, Chang WJ, Lee KS, Kim JH, Cho SP, Kim H, Nam KT, Hyeon T. Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nat Mater. 2019;18(6):620.

    Article  CAS  Google Scholar 

  50. Seadira TWP, Sadanandam G, Ntho T, Masuku CM, Scurrell MS. Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Appl Catal B: Environ. 2018;222:133.

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci. 1996;6(1):15.

    Article  CAS  Google Scholar 

  53. Filippi C, Singh DJ, Umrigar CJ. All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. Phys Rev B. 1994;50(20):14947.

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  CAS  Google Scholar 

  55. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.

  56. Li J, Zhang M, Guan Z, Li Q, He C, Yang J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B: Environ. 2017;206:300.

    Article  CAS  Google Scholar 

  57. Wu T, Zhao H, Zhu X, Xing Z, Liu Q, Liu T, Gao S, Lu S, Chen G, Asiri AM, Zhang Y, Sun X. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv Mater. 2020;32(30):2000299.

    Article  CAS  Google Scholar 

  58. Zhang H, Cai J, Wang Y, Wu M, Meng M, Tian Y, Li X, Zhang J, Zheng L, Jiang Z, Gong J. Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets. Appl Catal B: Environ. 2018;220:126.

    Article  CAS  Google Scholar 

  59. Wang Z, Mao X, Chen P, Xiao M, Monny SA, Wang S, Konarova M, Du A, Wang L. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew Chem Int Edit. 2019;58(4):1030.

    Article  CAS  Google Scholar 

  60. Qu D, Liu J, Miao X, Han M, Zhang H, Cui Z, Sun S, Kang Z, Fan H, Sun Z. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl Catal B: Environ. 2018;227:418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11874356, 11904039, 51772035 and 52071041), the Project for Fundamental and Frontier Research in Chongqing (Nos. cstc2019jcyjjqX0002 and cstc2020jcyj-msxmX0777) and the Fundamental Research Funds for the Central Universities (No. 106112016CDJZR308808). The work conducted at Chongqing Institute of Green and Intelligent Technology (Chinese Academy of Sciences) is also supported by Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or Xiao-Yuan Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YJ., Wang, Y., Wang, KW. et al. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 41, 385–395 (2022). https://doi.org/10.1007/s12598-021-01815-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01815-z

Keywords

Navigation