Skip to main content

Advertisement

Log in

Construction of S-scheme MnO2@CdS heterojunction with core–shell structure as H2-production photocatalyst

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Artificial photosynthesis is deemed as an efficient protocol for transforming abundant solar energy into valuable fuel. In this paper, the well-defined one-dimensional (1D) core–shell MnO2@CdS hybrids were constructed by employing MnO2 nanotubes and CdS nanoparticles as nano-building blocks via a chemical co-precipitation route. The rationally designed core–shell structure provided an intimate heterojunction interface between the CdS shell and MnO2 core. All the MnO2@CdS core–shell nanocomposites possess higher H2 evolution rate through visible light irradiation contrary to pristine CdS, and the optimal MnO2@CdS hybrid exhibits the utmost H2 evolution rate of 3.94 mmol·g−1·h−1, which is 2.8-fold higher compared with that of CdS. Appertaining to XPS and Mott-Schottky (M-S) analysis, such enhanced photocatalytic H2 generation of MnO2@CdS heterojunction was ascribed to an S-scheme mechanism, which suppressed the charge recombination along with a fast detachment of electron–hole pairs (e–h+) and significantly improved the severance of carriers, thus improved H2 evolution performance. These findings envision a new insight into the development of S-scheme heterostructure for photocatalytic H2 generation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu QQ, Shen JY, Yang XF, Zhang TR, Tang H. 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Appl Catal B. 2018;232:562.

    Article  CAS  Google Scholar 

  2. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG. S-scheme Heterojunction Photocatal Chem. 2020;6(7):1543.

    CAS  Google Scholar 

  3. Zhong W, Wu XH, Wang P, Fan JJ, Yu HG. Homojunction CdS photocatalysts with a massive S2–-adsorbed surface phase: one-step facile synthesis and high H2 evolution performance. ACS Sustain Chem Eng. 2020;8(1):543.

    Article  CAS  Google Scholar 

  4. Tang H, Wang R, Zhao CX, Chen ZP, Yang XF, Bukhvalov D, Lin ZX, Liu QQ. Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chem Eng J. 2019;374:1064.

    Article  CAS  Google Scholar 

  5. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev. 2019;48(7):2109.

    Article  CAS  Google Scholar 

  6. Cheng L, Xiang QJ, Liao YL, Zhang HW. CdS-based photocatalysts. Energy. Environ Sci. 2018;11(6):1362.

    CAS  Google Scholar 

  7. Xia PF, Cao SW, Zhu BC, Liu MJ, Shi MS, Yu JG, Zhang YF. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew Chem-Int Edit. 2020;59(13):5218.

    Article  CAS  Google Scholar 

  8. Chen YB, Li JF, Liao PY, Zeng YS, Wang Z, Liu ZQ. Cascaded electron transition in CuWO4/CdS/CDs heterostructure accelerating charge separation towards enhanced photocatalytic activity. Chin Chem Lett. 2019;31(6):1516.

    Article  Google Scholar 

  9. Panahi PN, Rasoulifard MH, Babaei S. Photocatalytic activity of cation (Mn) and anion (N) substitution in LaCoO3 nanoperovskite under visible light. Rare Met. 2020;39(2):139.

    Article  Google Scholar 

  10. Ferraz NP, Nogueira AE, Marcos FCF, Machado VA, Rocca RR, Assaf EM, Asencios YJO. CeO2-Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230.

    Article  CAS  Google Scholar 

  11. Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal. 2019;2(5):387.

    Article  CAS  Google Scholar 

  12. Fu JW, Xu QL, Low JX, Jiang CJ, Yu JG. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B. 2019;243:556.

    Article  CAS  Google Scholar 

  13. Zhong W, Huang Y, Wang XF, Fan JJ, Yu HG. Colloidal CdS and CdZnS nanocrystal photocatalysts with massive S2 adsorption: one-step facile synthesis and highly efficient H2 evolution performance. Chem Commun. 2020;56(65):9316.

    Article  CAS  Google Scholar 

  14. Peng JJ, Shen J, Yu XX, Tang H, Zulfiqar LQQ. Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution. Chin J Catal. 2021;42(1):87.

    Article  CAS  Google Scholar 

  15. Liu X, Zhao YX, Yang XF, Liu QQ, Yu XH, Li YY, Tang H, Zhang TR. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl Catal B. 2020;275:119144.

    Article  CAS  Google Scholar 

  16. Cao SW. Two-dimensional gersiloxenes with tunable band gap as new photocatalysts. Rare Met. 2020;39(6):610.

    Article  CAS  Google Scholar 

  17. Liu QQ, Huang JX, Tang H, Yu XH, Shen J. Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. J Mater Sci Technol. 2020;56(1):196.

    Article  Google Scholar 

  18. Mo Z, Xu H, Chen ZG, She XJ, Song YH, Lian JB, Zhu XW, Yan PC, Lei YZ, Yuan SQ, Li HM. Construction of MnO2/monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl Catal B. 2019;241:452.

    Article  CAS  Google Scholar 

  19. Cheng X, Dong GJ, Zhang YJ, Feng CC, Bi YP. Dual-bonding interactions between MnO2 cocatalyst and TiO2 photoanodes for efficient solar water splitting. Appl Catal B. 2020;267:118723.

    Article  CAS  Google Scholar 

  20. Ye JW, Zhou MH, Le Y, Cheng B, Yu JG. Three-dimensional carbon foam supported MnO2/Pt for rapid capture and catalytic oxidation of formaldehyde at room temperature. Appl Catal B. 2020;267:118689.

    Article  CAS  Google Scholar 

  21. Wu Y, Wang H, Tu W, Wu S, Liu Y, Tan YZ, Luo H, Yuan X, Chew JW. Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-light-driven photocatalytic water purification and H2 generation. Appl Catal B. 2018;229:181.

    Article  CAS  Google Scholar 

  22. Chen R, Yan ZH, Kong XJ, Long LS, Zheng LS. Integration of lanthanide-transition-metal clusters onto CdS surfaces for photocatalytic hydrogen evolution. Angew Chem Int Ed. 2018;57(51):16796.

    Article  CAS  Google Scholar 

  23. Gao DD, Yuan RR, Fan JJ, Hong XK, Yu HG. Highly efficient S2− adsorbed MoSx-modified TiO2 photocatalysts: a general grafting strategy and boosted interfacial charge transfer. J Mater Sci Technol. 2020;56:122.

    Article  Google Scholar 

  24. Saravanan L, Pandurangan A, Jayavel R. Synthesis and luminescence enhancement of cerium doped CdS nanoparticles. Mater Lett. 2012;66(1):343.

    Article  CAS  Google Scholar 

  25. Li DS, Wang HC, Tang H, Yang XF, Liu QQ. Remarkable enhancement in solar oxygen evolution from MoSe2/Ag3PO4 heterojunction photocatalyst via in situ constructing interfacial contact. ACS Sustain Chem Eng. 2019;7(9):8466.

    Article  CAS  Google Scholar 

  26. Xiang XL, Zhu BC, Cheng B, Yu JG, Lv HJ. Enhanced photocatalytic H2 production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small. 2020;16(26):2001024.

    Article  CAS  Google Scholar 

  27. Fan CD, Tang X, Wang L, Wang HF, Zhan WC, Guo Y. Performance of AgIr/MCM-41 catalysts for CO oxidation. Chin J Rare Metals. 2019;43(07):686.

    Google Scholar 

  28. Sun KH, Shen J, Liu QQ, Tang H, Zhang MY, Zulfiqar S, Lei CS. Synergistic effect of Co(II)-hole and Pt-electron cocatalysts for enhanced photocatalytic hydrogen evolution performance of P-doped g-C3N4. Chin J Catal. 2020;41(1):72.

    Article  CAS  Google Scholar 

  29. Kai SS, Xi BJ, Li HB, Xiong SL. Z-scheme CdS/Co9S8-RGO for photocatalytic hydrogen production. Inorg Chem Front. 2020;7(14):2692.

    Article  CAS  Google Scholar 

  30. Yu HG, Huang Y, Gao DD, Wang P, Tang H. Improved H2 generation performance of Pt/CdS photocatalyst by a dual-function TiO2 mediator for effective electron transfer and hole blocking. Ceram Int. 2019;45(8):9807.

    Article  CAS  Google Scholar 

  31. Lin Y, Zhang Q, Li YH, Liu YP, Xu KJ, Huang JG, Zhou XS, Peng F. The evolution from a typical type-I CdS/ZnS to type-II and Z-scheme hybrid structure for efficient and stable hydrogen production under visible light. ACS Sustain Chem Eng. 2020;8(11):4537.

    Article  CAS  Google Scholar 

  32. Liu H, Yu JY, Chen YK, Zhou ZG, Xiong GW, Zeng LL, Li HD, Liu Z, Zhao LL, Wang JG, Chu BL, Liu H, Zhou WJ. One-step sublimation and epitaxial growth of CdS-Cd heterogeneous nanoparticles on S-doped MoO2 nanosheets for efficient visible light-driven photocatalytic H2 generation. ACS Appl Mater Interfaces. 2020;12(2):2362.

    Article  CAS  Google Scholar 

  33. Zheng NC, Ouyang T, Chen YB, Wang Z, Chen DY, Liu ZQ. Ultrathin CdS shell sensitized hollow S-doped CeO2 spheres for efficient visible-light photocatalysis. Catal Sci Technol. 2019;9(6):1357.

    Article  CAS  Google Scholar 

  34. Chen L, Xu YM, Chen B. In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. Appl Catal B. 2019;256:117848.

    Article  CAS  Google Scholar 

  35. Wu XH, Gao DD, Yu HG, Yu JG. High-yield lactic acid-mediated route for a g-C3N4 nanosheet photocatalyst with enhanced H2 evolution performance. Nanoscale. 2019;11(19):9608.

    Article  CAS  Google Scholar 

  36. Huang YM, Yu Y, Yu YF, Zhang B. Oxygen vacancy engineering in photocatalysis. Sol RRL. 2020;4(8):2000037.

    Article  CAS  Google Scholar 

  37. Wang YT, Yu YF, Jia RR, Zhang C, Zhang B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci Rev. 2019;6(4):730.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672113, 21975110 and 21972058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Tang or Qin-Qin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, S., Liu, S., Rahman, N. et al. Construction of S-scheme MnO2@CdS heterojunction with core–shell structure as H2-production photocatalyst. Rare Met. 40, 2381–2391 (2021). https://doi.org/10.1007/s12598-020-01616-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01616-w

Keywords

Navigation