Skip to main content
Log in

Simultaneously enhanced electrochemical performance and air stability of Ni-rich cathode with a modified washing process

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Water washing has been regarded as one of the most effective strategies to remove surface residual lithium of nickel-rich layered oxides for lithium-ion batteries (LIBs). However, the loss of lattice lithium during the water washing process deteriorates the electrochemical performances and air stability. Herein, washing the LiNi0.90Co0.08Al0.02O2 (NCA) with ammonium dihydrogen phosphate (NH4H2PO4) solution has been proposed to simultaneously enhance electrochemical performances and air stability, in which in-situ generated Li3PO4 coating layer on surface of NCA can suppress the loss of lattice lithium. Besides, as a fast ionic conductor, Li3PO4 coating layer on NCA can prevent the direct contact with electrolyte/air. As a result, the NH4H2PO4 solution washed NCA cathode can deliver a high capacity of 131.9 mAh·g−1 at 10.0C rate as well as impressive cycle stability with a capacity retention of 83.1% after 100 cycles at 1.0C, much higher than those of water washed NCA (WS-NCA) electrode. After exposed in air for 7 days, the NH4H2PO4 solution washed NCA electrode can more effectively maintain the structural integrity as well as the electrochemical performances than water-washed NCA. This work provides a simple and effective approach to enhance the cycle stability and air stability of Nickel-rich cathode materials.

Graphical abstract

摘要

水洗被认为是去除锂离子电池中富镍层状氧化物的表面残留锂的最有效策略之一。然而, 晶格锂在水洗过程中的损失会降低富镍材料的电化学性能和空气稳定性。本文提出用 NH4H2PO4 溶液洗涤 LiNi0.90Co0.08Al0.02O2 (NCA), 同时提高NCA的电化学性能和空气稳定性, 其中在NCA表面原位生成的Li3PO4涂层可以抑制晶格锂的损失, 此外, 作为一种快速离子导体, NCA上的Li3PO4涂层可以防止与电解质/空气的直接接触。因此, NH4H2PO4 溶液洗涤后的NCA阴极在10.0C下可提供 131.9 mAh·g−1 的高容量, 以及令人印象深刻的循环稳定性, 在1.0C下100次循环后容量保持率为 83.1%, 远高于水洗后的NCA电极。在空气中暴露7天后, NH4H2PO4 溶液洗涤后的NCA电极比水洗后的NCA更有效地保持了结构完整性和电化学性能。这项工作为提高富镍阴极材料的循环稳定性和空气稳定性提供了一种简单有效的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seong WM, Park KY, Lee MH, Moon S, Oh K, Park H, Lee S, Kang K. Abnormal self-discharge in lithium-ion batteries. Energy Environ Sci. 2018;11(4):970. https://doi.org/10.1039/c8ee00186c.

    Article  CAS  Google Scholar 

  2. Chen C, Liang QW, Chen ZX, Zhu WY, Wang ZJ, Li Y, Wu XW, Xiong XH. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew Chem Int Ed. 2021;60(51):26718. https://doi.org/10.1002/anie.202110441.

    Article  CAS  Google Scholar 

  3. Ma XD, Ji C, Li XK, Liu YK, Xiong XH. Red@black phosphorus core-shell heterostructure with superior air stability for high-rate and durable sodium-ion battery. Mater Today. 2022;59:36. https://doi.org/10.1016/j.mattod.2022.08.013.

    Article  CAS  Google Scholar 

  4. Chen C, Liang QW, Wang G, Liu DD, Xiong XH. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv Funct Mater. 2022;32(4):2107249. https://doi.org/10.1002/adfm.202107249.

    Article  CAS  Google Scholar 

  5. Ding XB, Huang QH, Xiong XH. Research and application of fast-charging graphite anodes for lithium-ion batteries. Acta Phys Chim Sin. 2022;38(11):2204057. https://doi.org/10.3866/pku.Whxb202204057.

    Article  Google Scholar 

  6. Li Y, Liu X, Wang L, Feng XN, Ren DS, Wu Y, Xu GL, Lu LG, Hou JX, Zhang WF, Wang Y, Xu W, Ren Y, Wang Z, Huang J, Meng X, Han X, Wang H, He X, Chen Z, Amine K, Ouyang M. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy. 2021;85:105878. https://doi.org/10.1016/j.nanoen.2021.105878.

    Article  CAS  Google Scholar 

  7. Tao QQ, Wang LG, Shi CH, Li J, Chen G, Xue Z, Wang JC, Wang S, Jin HL. Understanding the Ni-rich layered structure materials for high-energy density lithium-ion batteries. Mat Chem Front. 2021;5(6):2607. https://doi.org/10.1039/d1qm00052g.

    Article  CAS  Google Scholar 

  8. Ding XB, Huang HY, Huang QH, Hu BR, Li X, Ma XD, Xiong XH. Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage. J Energy Chem. 2023;77:280. https://doi.org/10.1016/j.jechem.2022.10.049.

    Article  CAS  Google Scholar 

  9. Xu C, Märker K, Lee J, Mahadevegowda A, Reeves PJ, Day SJ, Groh MF, Emge SP, Ducati C, Layla Mehdi BL, Tang CC, Grey CP. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater. 2021;20(1):84. https://doi.org/10.1038/s41563-020-0767-8.

    Article  CAS  Google Scholar 

  10. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater. 2018;8(6):1702028. https://doi.org/10.1002/aenm.201702028.

    Article  CAS  Google Scholar 

  11. Myung ST, Maglia F, Park KJ, Yoon CS, Lamp P, Kim SJ, Sun YK. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2017;2(1):196. https://doi.org/10.1021/acsenergylett.6b00594.

    Article  CAS  Google Scholar 

  12. Wu F, Li Q, Chen L, Wang ZR, Chen G, Bao LY, Lu Y, Chen S, Su YF. An optimized synthetic process for the substitution of cobalt in nickel-rich cathode materials. Acta Phys-Chim Sin. 2022;38(5):2007017. https://doi.org/10.3866/PKU.WHXB202007017.

    Article  CAS  Google Scholar 

  13. Seong WM, Cho KH, Park JW, Park H, Eum D, Lee MH, Kim ISS, Lim J, Kang K. Controlling residual lithium in high-nickel (> 90%) lithium layered oxides for cathodes in Lithium-ion batteries. Angew Chem Int Ed. 2020;59(42):18662. https://doi.org/10.1002/anie.202007436.

    Article  CAS  Google Scholar 

  14. Li WD, Song BH, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev. 2017;46(10):3006. https://doi.org/10.1039/C6CS00875E.

    Article  CAS  Google Scholar 

  15. Doo SW, Kim K, Kim H, Lee S, Choi SH, Lee KT. Residual Li compounds-selective washing process for Ni-rich layered oxide cathode materials for Li-ion batteries. J Electrochem Soc. 2021;168(10):100529. https://doi.org/10.1149/1945-7111/ac2f05.

    Article  CAS  Google Scholar 

  16. Renfrew SE, McCloskey BD. Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides. J Am Chem Soc. 2017;139(49):17853. https://doi.org/10.1021/jacs.7b08461.

    Article  CAS  Google Scholar 

  17. Mahne N, Renfrew SE, McCloskey BD, Freunberger SA. Electrochemical oxidation of lithium carbonate generates singlet oxygen. Angew Chem Int Ed. 2018;57(19):5529. https://doi.org/10.1002/anie.201802277.

    Article  CAS  Google Scholar 

  18. Zhang ZC, Wang X, Lv YC, Mao QZ, Qian ZT. LiNi0.83Co0.12Mn0.05O2 of high nickel ternary cathode material with different precursor preparation processes. Chin J Rare Met. 2021;45(4):410.

    Google Scholar 

  19. Zhu XF, Li X, Liang TQ, Liu XH, Ma JM. Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries. Rare Met. 2023;42(2):387. https://doi.org/10.1007/s12598-022-02101-2.

    Article  CAS  Google Scholar 

  20. Hofmann M, Kapuschinski M, Guntow U, Giffin GA. Implications of aqueous processing for high energy density cathode materials: part II. Water-induced surface species on LiNi0.8Co0.15Al0.05O2. J Electrochem Soc. 2020;167(14):140535. https://doi.org/10.1149/1945-7111/abc6ca.

    Article  CAS  Google Scholar 

  21. Xu SG, Wang XN, Zhang WY, Xu KH, Zhou XY, Zhang YJ, Wang HB, Zhao JQ. The effects of washing on LiNi0.83Co0.13Mn0.04O2 cathode materials. Solid State Ion. 2019;334:105. https://doi.org/10.1016/j.ssi.2019.01.037.

    Article  CAS  Google Scholar 

  22. Yu HF, Zhu HW, Yang ZF, Liu MM, Jiang H, Li CZ. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes. Chem Eng J. 2021;412:128625. https://doi.org/10.1016/j.cej.2021.128625.

    Article  CAS  Google Scholar 

  23. Kim UH, Park NY, Park GT, Kim H, Yoon CS, Sun YK. High-energy W-Doped Li[Ni0.95Co0.04Al0.01]O2 cathodes for next-generation electric vehicles. Energy Storage Mater. 2020;33:399. https://doi.org/10.1016/j.ensm.2020.08.013.

    Article  Google Scholar 

  24. Xiong XH, Wang ZX, Guo HJ, Zhang Q, Li XH. Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C. J Mater Chem A. 2013;1(4):1284. https://doi.org/10.1039/C2TA00678B.

    Article  CAS  Google Scholar 

  25. Xiong XH, Wang ZX, Yan GC, Guo HJ, Li XH. Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources. 2014;245:183. https://doi.org/10.1016/j.jpowsour.2013.06.133.

    Article  CAS  Google Scholar 

  26. Xiong XH, Wang ZX, Yue P, Guo HJ, Wu FX, Wang JX, Li XH. Washing effects on electrochemical performance and storage characteristics of LiNi08Co01Mn01O2 as cathode material for lithium-ion batteries. J Power Sources. 2013;222:318. https://doi.org/10.1016/j.jpowsour.2012.08.029.

    Article  CAS  Google Scholar 

  27. Lee W, Lee S, Lee E, Choi M, Thangavel R, Lee YH, Yoon WS. Destabilization of the surface structure of Ni-rich layered materials by water-washing process. Energy Storage Mater. 2022;44:441. https://doi.org/10.1016/j.ensm.2021.11.006.

    Article  Google Scholar 

  28. Zheng XB, Li XH, Wang ZX, Guo HJ, Huang ZJ, Yan GC, Wang D. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery. Electrochim Acta. 2016;191:832. https://doi.org/10.1016/j.electacta.2016.01.142.

    Article  CAS  Google Scholar 

  29. You LZ, Chu BB, Li GX, Huang T, Yu AS. H3BO3 washed LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance and storage characteristics. J Power Sources. 2021;482:228940. https://doi.org/10.1016/j.jpowsour.2020.228940.

    Article  CAS  Google Scholar 

  30. Xu S, Du CY, Xu X, Han GK, Zuo PJ, Cheng XQ, Ma YL, Yin GP. A mild surface washing method using protonated polyaniline for Ni-rich LiNi0.8Co0.1Mn0.1O2 material of lithium ion batteries. Electrochim Acta. 2017;248:534. https://doi.org/10.1016/j.electacta.2017.07.169.

    Article  CAS  Google Scholar 

  31. You BZ, Wang ZX, Chang YJ, Yin W, Xu ZW, Zeng YX, Yan GC, Wang JX. Multi-scale boron penetration toward stabilizing nickel-rich cathode. Fundam Res. 2022. https://doi.org/10.1016/j.fmre.2022.03.001.

    Article  Google Scholar 

  32. Gao S, Wang LJ, Zhou CY, Guo CL, Zhang JL, Li W. In-situ construction protective layer and phosphate doping synergistically improve the long-term cycle stability of LiNi0.6Co0.1Mn0.3O2. Chem Eng J. 2021;426:131359. https://doi.org/10.1016/j.cej.2021.131359.

    Article  CAS  Google Scholar 

  33. Zou PJ, Lin ZH, Fan MN, Wang F, Liu Y, Xiong XH. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506. https://doi.org/10.1016/j.apsusc.2019.144506.

    Article  CAS  Google Scholar 

  34. Sheng H, Meng XH, Xiao DD, Fan M, Chen WP, Wan J, Tang JL, Zou YG, Wang FY, Wen R, Shi JL, Guo YG. An air-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification. Adv Mater. 2022;34(12):2108947. https://doi.org/10.1002/adma.202108947.

    Article  CAS  Google Scholar 

  35. Zeng TY, Zhang XY, Qu XY, Li MQ, Zhang PP, Su MR, Dou AC, Naveed A, Zhou Y, Liu YJ. Mechanism exploration of enhanced electrochemical performance of single-crystal versus polycrystalline LiNi0.8Mn0.1Co0.1O2. Rare Met. 2022;41(11):3783. https://doi.org/10.1007/s12598-022-02055-5.

    Article  CAS  Google Scholar 

  36. Yang GC, Pan K, Lai FY, Wang ZM, Chu YQ, Yang SL, Han JL, Wang HQ, Zhang XH, Li QY. Integrated co-modification of PO43 polyanion doping and Li2TiO3 coating for Ni-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material of Lithium-Ion batteries. Chem Eng J. 2021;421:129964. https://doi.org/10.1016/j.cej.2021.129964.

    Article  CAS  Google Scholar 

  37. Huang X, Duan JG, He J, Shi H, Li Y, Zhang Y, Wang D, Dong P, Zhang Y. Ions transfer behavior during water washing for LiNi0.815Co0.15Al0.035O2: role of excess lithium. Mater Today Energy. 2020;17:100440. https://doi.org/10.1016/j.mtener.2020.100440.

    Article  Google Scholar 

  38. Hong CY, Leng QY, Zhu JP, Zheng SY, He HJ, Li YX, Liu R, Wan JJ, Yang Y. Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. J Mater Chem A. 2020;8(17):8540. https://doi.org/10.1039/d0ta00555j.

    Article  CAS  Google Scholar 

  39. Gan QM, Qin N, Wang ZY, Li ZQ, Zhu YH, Li YZ, Gu S, Yuan HM, Luo W, Lu L, Xu ZH, Lu ZG. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-Rich layered cathodes. ACS Appl Energy Mater. 2020;3(8):7445. https://doi.org/10.1021/acsaem.0c00859.

    Article  CAS  Google Scholar 

  40. Zhang XY, Qiu YG, Cheng FY, Wei P, Li YY, Liu Y, Sun SX, Xu Y, Li Q, Fang C, Han JT, Huang YH. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification. ACS Appl Mater Interfaces. 2021;13(15):17707. https://doi.org/10.1021/acsami.1c03195.

    Article  CAS  Google Scholar 

  41. Lan ZW, Zhang JR, Li YY, Xi RH, Yuan YX, Zhao L, Hou XY, Wang JT, Ng DHL, Zhang CH. LiFePO4 and LiMn2O4 nanocomposite coating of LiNi0.815Co0.15Al0.035O2 cathode material for high-performance lithium-ion battery. Rare Met. 2022;41(8):2560. https://doi.org/10.1007/s12598-022-01993-4.

    Article  CAS  Google Scholar 

  42. Zheng JM, Yan PF, Estevez L, Wang CM, Zhang JG. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy. 2018;49:538. https://doi.org/10.1016/j.nanoen.2018.04.077.

    Article  CAS  Google Scholar 

  43. Zeng LC, Shi KX, Qiu B, Liang HY, Li JH, Zhao W, Li SL, Zhang WG, Liu ZP, Liu QB. Hydrophobic surface coating against chemical environmental instability for Ni-rich layered oxide cathode materials. Chem Eng J. 2022;437:135276. https://doi.org/10.1016/j.cej.2022.135276.

    Article  CAS  Google Scholar 

  44. Li JY, Wang X, Kong XB, Yang HY, Zeng J, Zhao JB. Insight into the kinetic degradation of stored nickel-rich layered cathode materials for lithium-ion batteries. ACS Sustain Chem Eng. 2021;9(31):10547. https://doi.org/10.1021/acssuschemeng.1c02486.

    Article  CAS  Google Scholar 

  45. Li LJ, Chen JX, Huang H, Tan L, Song LB, Wu HH, Wang C, Zhao Z, Yi HL, Duan JF, Dong T. Role of residual Li and oxygen vacancies in Ni-rich cathode materials. ACS Appl Mater Interfaces. 2021;13(36):42554. https://doi.org/10.1021/acsami.1c06550.

    Article  CAS  Google Scholar 

  46. Wang C, Tan L, Yi HL, Zhao ZX, Yi XL, Zhou YY, Zheng JC, Wang JX, Li LJ. Unveiling the impact of residual Li conversion and cation ordering on electrochemical performance of Co-free Ni-rich cathodes. Nano Res. 2022;15(10):9038. https://doi.org/10.1007/s12274-022-4889-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51874142), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2019TQ05L903) and the Young Elite Scientists Sponsorship Program by CAST (No. 2019QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-Hui Xiong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, BR., Yuan, YY., Wang, YC. et al. Simultaneously enhanced electrochemical performance and air stability of Ni-rich cathode with a modified washing process. Rare Met. 43, 87–97 (2024). https://doi.org/10.1007/s12598-023-02388-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02388-9

Keywords

Navigation