Skip to main content
Log in

LiFePO4 and LiMn2O4 nanocomposite coating of LiNi0.815Co0.15Al0.035O2 cathode material for high-performance lithium-ion battery

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

为解决富镍层状正极材料离子电导率低、容量衰减快、循环性能差等多重问题, 通过两步球磨法并精确控制LiFePO4和LiMn2O4的包覆质量比, 合成了不同包覆量的LiNi0.815Co0.15Al0.035O2@LiFePO4@LiMn2O4 (NCA@LFP@LMO, 简称AFM) 系列正极材料。其中, 包覆质量比为8:1:1的NCA、LFP和LMO正极材料 (A8F1M1)呈现出更理想的纳米复合涂层, 并且在 1.0C下循环200次后仍可提供151.67 mAh·g-1的放电比容量 (容量保持率为 94.52%)。此外, dQ/dV曲线和电化学阻抗谱 (EIS) 表明A8F1M1 可以有效抑制由有害的H2↔H3 相变在4.2 V附近引起的内部结构损伤, 降低电荷转移电阻 (Rct) 并提高Li+(D +Li )的扩散系数。鉴于此, 我们的工作有望为先进正极材料的设计、开发和应用提供新的思路。

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Masias A, Marcicki J, Paxton WA. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021;6(2):621.

    Article  CAS  Google Scholar 

  2. Wang W, Wu L, Li Z, Huang K, Jiang J, Chen Z, Qi X, Dou H, Zhang X. In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries. ACS Appl Energy Mater. 2020;3(12):12423.

    Article  CAS  Google Scholar 

  3. Zhang ZC, Wang X, Lv YC, Mao QZ, Qian ZT. LiNi0.83Co0.12Mn0.05O2 of high nickel ternary cathode material with different precursor preparation processes. Chin J Rare Met. 2021;45(4):410.

    Google Scholar 

  4. Li WW, Zhang XJ, Si JJ, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Metals. 2021;40(7):1719.

    Article  CAS  Google Scholar 

  5. Zhu L, Yan TF, Jia D, Wang Y, Wu Q, Gu HT, Wu YM, Tang WP. LiFePO4-coated LiNi0.5Co0.2Mn0.3O2 cathode materials with improved high voltage electrochemical performance and enhanced safety for lithium ion pouch cells. J Electrochem Soc. 2019;166(3):5437.

    Article  CAS  Google Scholar 

  6. Chen J, Zhu L, Jia D, Jiang X, Wu Y, Hao Q, Xia X, Ouyang Y, Peng L, Tang W, Liu T. LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating. Electrochim Acta. 2019;312:179.

    Article  CAS  Google Scholar 

  7. Wang Y, Wang E, Zhang X, Yu H. High-voltage, “single-crystal” cathode materials for lithium-ion batteries. Energy Fuels. 2021;35(3):1918.

    Article  CAS  Google Scholar 

  8. Lan Z, Zhang J, Li Y, Xi R, Zhao D, Zhang C. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials. Energy Storage Sci Technol. 2021;10(1):27.

    Google Scholar 

  9. Wei HX, Huang YD, Tang LB, Yan C, He ZJ, Mao J, Dai K, Wu XW, Jiang JB, Zheng JC. Lithium-rich manganese-based cathode materials with highly stable lattice and surface enabled by perovskite-type phase-compatible layer. Nano Energy. 2021;88:106288.

    Article  CAS  Google Scholar 

  10. Ryu HH, Park NY, Noh TC, Kang GC, Maglia F, Kim SJ, Yoon CS, Sun YK. Microstrain alleviation in high-energy Ni-rich NCMA cathode for long battery life. ACS Energy Lett. 2021;6(1):216.

    Article  CAS  Google Scholar 

  11. Yin S, Deng W, Chen J, Gao X, Zou G, Hou H, Ji X. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy. 2021;83:105854.

    Article  CAS  Google Scholar 

  12. Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv Func Mater. 2019;29(13):1808825.

    Article  CAS  Google Scholar 

  13. Lim JM, Hwang T, Kim D, Park MS, Cho K, Cho M. Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci Rep. 2017;7(1):39669.

    Article  CAS  Google Scholar 

  14. Sun HH, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem Mater. 2017;29(19):8486.

    Article  CAS  Google Scholar 

  15. Xu C, Märker K, Lee J, Mahadevegowda A, Reeves PJ, Day SJ, Groh MF, Emge SP, Ducati C, Layla Mehdi B, Tang CC, Grey CP. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater. 2021;20(1):84.

    Article  CAS  Google Scholar 

  16. Sim SJ, Lee SH, Jin BS, Kim HS. Effects of lithium tungsten oxide coating on LiNi0.90Co0.05Mn0.05O2 cathode material for lithium-ion batteries. J Power Sources. 2021;481:229037.

    Article  CAS  Google Scholar 

  17. Ye Z, Qiu L, Yang W, Wu Z, Liu Y, Wang G, Song Y, Zhong B, Guo X. Nickel-rich layered cathode materials for lithium-ion batteries. Chemistry (Weinheim an der Bergstrasse, Germany). 2021;27(13):4249.

    CAS  Google Scholar 

  18. Lu Y, Zhang Y, Zhang Q, Cheng F, Chen J. Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology. 2020;53:1.

    Article  CAS  Google Scholar 

  19. Liu Y, Tang LB, Wei HX, Zhang XH, He ZJ, Li YJ, Zheng JC. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy. 2019;65:104043.

    Article  CAS  Google Scholar 

  20. Dai G, Yu M, Shen F, Cao J, Ni L, Chen Y, Tang Y, Chen Y. Improved cycling performance of LiNi0.8Co0.15Al0.05O2/Al2O3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process. Ionics. 2016;22(11):2021.

    Article  CAS  Google Scholar 

  21. Xu Y, Li X, Wang Z, Guo H, Huang B. Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material. Mater Lett. 2015;143:151.

    Article  CAS  Google Scholar 

  22. Huang W, Zhuang W, Li N, Gao M, Li W, Xing X, Lu S. Nanoscale Y-doped ZrO2 modified LiNi0.88Co0.09Al0.03O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Solid State Ionics. 2019;343:115087.

    Article  CAS  Google Scholar 

  23. Qi R, Shi JL, Zhang XD, Zeng XX, Yin YX, Xu J, Chen L, Fu WG, Guo YG, Wan LJ. Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Sci Chin Chem. 2017;60(9):1230.

    Article  CAS  Google Scholar 

  24. Liu W, Guo H, Qin M, Deng J, Xu L, Yi S, Hong T. Effect of voltage range and BiPO4 coating on the electrochemical properties of LiNi0.8Co0.15Al0.05O2. ChemistrySelect. 2018;3(26):7660.

    Article  CAS  Google Scholar 

  25. Liu W, Hu G, Du K, Peng Z, Cao Y, Liu Q. Synthesis and characterization of LiCoO2-coated LiNi0.8Co0.15Al0.05O2 cathode materials. Mater Lett. 2012;83:11.

    Article  CAS  Google Scholar 

  26. Cho J. Direct micron-sized LiMn2O4 particle coating on LiCoO2 cathode material using surfactant. Solid State Ionics. 2003;160(3):241.

    Article  CAS  Google Scholar 

  27. Wei Y, Zhou C, Zhao D, Wang G. Enhanced electrochemical performance and safety of LiNi0.8Co0.15Al0.05O2 by LiFePO4 modification. Chem Phys Lett. 2020;751:137480.

    Article  CAS  Google Scholar 

  28. Huang WJ, Zheng JY, Liu JJ, Yang RM, Cheng FX, Suo HB, Guo H, Xia SB. Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate. J Alloys Compd. 2020;827:154296.

    Article  CAS  Google Scholar 

  29. Zhong Z, Chen L, Zhu C, Ren W, Kong L, Wan Y. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. J Power Sources. 2020;464:228235.

    Article  CAS  Google Scholar 

  30. Du Y, Huang X, Zhang K, Liang F, Li Q, Yao Y, Dai Y. Thermal stability of LiFePO4/C-LiMn2O4 blended cathode materials. Sci China Technol Sci. 2017;60(1):58.

    Article  CAS  Google Scholar 

  31. Du F, Sun P, Zhou Q, Zeng D, Hu D, Fan Z, Hao Q, Mei C, Xu T, Zheng J. Interlinking primary grains with lithium boron oxide to enhance the stability of LiNi0.8Co0.15Al0.05O2. ACS Appl Mater Interfaces. 2020;12(51):56963.

    Article  CAS  Google Scholar 

  32. Ahaliabadeh Z, Miikkulainen V, Mäntymäki M, Mousavihashemi S, Lahtinen J, Lide Y, Jiang H, Mizohata K, Kankaanpää T, Kallio T. Understanding the stabilizing effects of nanoscale metal oxide and Li–metal oxide coatings on lithium-ion battery positive electrode materials. ACS Appl Mater Interfaces. 2021;13(36):42773.

    Article  CAS  Google Scholar 

  33. Sim SJ, Lee SH, Jin BS, Kim HS. Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries. Sci Rep. 2020;10(1):11114.

    Article  CAS  Google Scholar 

  34. Zhou P, Zhang Z, Meng H, Lu Y, Cao J, Cheng F, Tao Z, Chen J. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. Nanoscale. 2016;8(46):19263.

    Article  CAS  Google Scholar 

  35. Liu Y, Qin W, Zhang D, Feng L, Wu L. Effect of Na+ in situ doping on LiFePO4/C cathode material for lithium-ion batteries. Progress Nat Sci Mater Int. 2021;31(1):14.

    Article  CAS  Google Scholar 

  36. Zhu L, Jia D, Yu C, Wu Y, Wu X, Tang W. Electrochemical thermal stability of the LiFePO4/LiNi0.8Co0.15Al0.05O2 blend cathode material for lithium ion batteries. Energy Storage Sci Technol. 2016;5(4):478.

    Google Scholar 

  37. Ma Z, Li D, Han Y, Shi X, Zhang H, Song D, Zhang L. Li-rich layered/spinel cathode composite 3/4[Li2MnO3·LiCxO2]·1/4[LiCxMnO4] (Cx=Cr1-yCoy) for Li-ion batteries. J Electrochem Soc. 2018;166(3):A5065.

    Article  CAS  Google Scholar 

  38. Wang X, Hao H, Liu J, Huang T, Yu A. A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim Acta. 2011;56(11):4065.

    Article  CAS  Google Scholar 

  39. Fan XM, Huang YD, Wei HX, Tang LB, He ZJ, Yan C, Mao J, Dai KH, Zheng JC. Surface modification engineering enabling 4.6 V single-crystalline Ni-rich cathode with superior long-term cyclability. Adv Funct Mater. 2022;32(6):2109421.

    Article  CAS  Google Scholar 

  40. Kim UH, Park JH, Aishova A, Ribas RM, Monteiro RS, Griffith KJ, Yoon CS, Sun YK. Microstructure engineered Ni-rich layered cathode for electric vehicle batteries. Adv Energy Mater. 2021;11(25):2100884.

    Article  CAS  Google Scholar 

  41. Chen J, Deng W, Gao X, Yin S, Yang L, Liu H, Zou G, Hou H, Ji X. Demystifying the lattice oxygen redox in layered oxide cathode materials of lithium-ion batteries. ACS Nano. 2021;15(4):6061.

    Article  CAS  Google Scholar 

  42. Nam GW, Park NY, Park KJ, Yang J, Liu J, Yoon CS, Sun YK. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent. ACS Energy Lett. 2019;4(12):2995.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Qinghai (No. 2018-ZJ-727).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dickon H. L. Ng or Cai-Hong Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5206 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, ZW., Zhang, JR., Li, YY. et al. LiFePO4 and LiMn2O4 nanocomposite coating of LiNi0.815Co0.15Al0.035O2 cathode material for high-performance lithium-ion battery. Rare Met. 41, 2560–2566 (2022). https://doi.org/10.1007/s12598-022-01993-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01993-4

Navigation