Skip to main content

Advertisement

Log in

EZH2 knockdown in tamoxifen-resistant MCF-7 cells unravels novel targets for regaining sensitivity towards tamoxifen

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

Acquired resistance to drug involves multilayered genetic and epigenetic regulation. Inhibition of EZH2 has proven to reverse the tamoxifen resistance back to the sensitive state in breast cancer. However, the molecular players involved in EZH2-mediated effects on tamoxifen-resistant MCF-7 cells are unknown. This study was conducted to understand the global change in proteome profile of tamoxifen-resistant MCF-7 breast cancer cells upon EZH2 knockdown.

Methods

Tamoxifen resistance MCF-7 breast cancer cells were established using increasing concentrations of 4-hydroxy tamoxifen. Using label free proteomics approach, we studied the alteration in total proteome in resistant cells as well as cells transfected with siEZH2 in comparison to sensitive and cells transfected with non-targeting siRNA.

Results

Here, we report list of proteins that were previously not recognized for their role in tamoxifen resistance and hold a close association with breast cancer patient survival. Proteins Annexin A2, CD44, nucleosome assembly protein 1, and lamin A/C were among the most upregulated protein in tamoxifen-resistant cells that were found to be abrogated upon EZH2 knockdown. The study suggests the involvement for various proteins in acquiring resistance towards tamoxifen and anticipates further research for investigating their therapeutic potentials.

Conclusion

Overall, we propose that targeting EZH2 or the molecules down the cascade might be helpful in reacquiring sensitivity to tamoxifen in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The mass spectrometry proteomics data generated during the study have been deposited to the ProteomeXchange Consortium via the PRIDE with an accession id PXD012609.

References

  1. Chang M. Tamoxifen resistance in breast cancer. Biomol Ther. 2012;20(3):256–67. https://doi.org/10.4062/biomolther.2012.20.3.256.

    Article  CAS  Google Scholar 

  2. Hu Q, Baeg GH. Role of epigenome in tumorigenesis and drug resistance. Food Chem Toxicol. 2017;109(Pt 1):663–8. https://doi.org/10.1016/j.fct.2017.07.022.

    Article  CAS  PubMed  Google Scholar 

  3. Balch C, Huang TH, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol. 2004;191(5):1552–72. https://doi.org/10.1016/j.ajog.2004.05.025.

    Article  CAS  PubMed  Google Scholar 

  4. Askarian-Amiri ME, Leung E, Finlay G, Baguley BC. The regulatory role of long noncoding RNAs in cancer drug resistance. Methods Mol Biol. 2016;1395:207–27. https://doi.org/10.1007/978-1-4939-3347-1_12.

    Article  CAS  PubMed  Google Scholar 

  5. Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18. https://doi.org/10.1007/978-1-4939-3347-1_1.

    Article  CAS  PubMed  Google Scholar 

  6. Issa ME, Takhsha FS, Chirumamilla CS, Perez-Novo C, Vanden Berghe W, Cuendet M. Epigenetic strategies to reverse drug resistance in heterogeneous multiple myeloma. Clin Epigenet. 2017;9:17. https://doi.org/10.1186/s13148-017-0319-5.

    Article  CAS  Google Scholar 

  7. Chen S, Yao F, Xiao Q, Liu Q, Yang Y, Li X, Jiang G, Kuno T, Fang Y. EZH2 inhibition sensitizes tamoxifenresistant breast cancer cells through cell cycle regulation. Mol Med Rep. 2018;17(2):2642–50. https://doi.org/10.3892/mmr.2017.8160.

    Article  CAS  PubMed  Google Scholar 

  8. Tamm-Rosenstein K, Simm J, Suhorutshenko M, Salumets A, Metsis M. Changes in the transcriptome of the human endometrial Ishikawa cancer cell line induced by estrogen, progesterone, tamoxifen, and mifepristone (RU486) as detected by RNA-sequencing. PLoS ONE. 2013;8(7):e68907. https://doi.org/10.1371/journal.pone.0068907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Y, Zhang Z, Cenciarini ME, Proietti CJ, Amasino M, Hong T, Yang M, Liao Y, Chiang HC, Kaklamani VG, Jeselsohn R, Vadlamudi RK, Huang TH, Li R, De Angelis C, Fu X, Elizalde PV, Schiff R, Brown M, Xu K. Tamoxifen resistance in breast cancer is regulated by the EZH2-ERalpha-GREB1 transcriptional axis. Can Res. 2018;78(3):671–84. https://doi.org/10.1158/0008-5472.CAN-17-1327.

    Article  CAS  Google Scholar 

  10. Reijm EA, Jansen MP, Ruigrok-Ritstier K, van Staveren IL, Look MP, van Gelder ME, Sieuwerts AM, Sleijfer S, Foekens JA, Berns EM. Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer. Breast Cancer Res Treat. 2011;125(2):387–94. https://doi.org/10.1007/s10549-010-0836-9.

    Article  CAS  PubMed  Google Scholar 

  11. Reijm EA, Timmermans AM, Look MP, Meijer-van Gelder ME, Stobbe CK, van Deurzen CH, Martens JW, Sleijfer S, Foekens JA, Berns PM, Jansen MP. High protein expression of EZH2 is related to unfavorable outcome to tamoxifen in metastatic breast cancer. Ann Oncol. 2014;25(11):2185–90. https://doi.org/10.1093/annonc/mdu391.

    Article  CAS  PubMed  Google Scholar 

  12. Johnston SR, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M, Ebbs SR, Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Can Res. 1995;55(15):3331–8.

    CAS  Google Scholar 

  13. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003;144(3):1032–44. https://doi.org/10.1210/en.2002-220620.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou C, Zhong Q, Rhodes LV, Townley I, Bratton MR, Zhang Q, Martin EC, Elliott S, Collins-Burow BM, Burow ME, Wang G. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration. Breast Cancer Res. 2012;14(2):R45. https://doi.org/10.1186/bcr3144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jene-Sanz A, Varaljai R, Vilkova AV, Khramtsova GF, Khramtsov AI, Olopade OI, Lopez-Bigas N, Benevolenskaya EV. Expression of polycomb targets predicts breast cancer prognosis. Mol Cell Biol. 2013;33(19):3951–61. https://doi.org/10.1128/MCB.00426-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45. https://doi.org/10.1007/978-1-61779-080-5_20.

    Article  CAS  PubMed  Google Scholar 

  17. Kumari K, Das B, Adhya A, Chaudhary S, Senapati S, Mishra SK. Nicotine associated breast cancer in smokers is mediated through high level of EZH2 expression which can be reversed by methyltransferase inhibitor DZNepA. Cell Death Dis. 2018;9(2):152. https://doi.org/10.1038/s41419-017-0224-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123(3):725–31. https://doi.org/10.1007/s10549-009-0674-9.

    Article  CAS  PubMed  Google Scholar 

  19. Shaul YD, Yuan B, Thiru P, Nutter-Upham A, McCallum S, Lanzkron C, Bell GW, Sabatini DM. MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Res. 2016;44(D1):D560–566. https://doi.org/10.1093/nar/gkv1337.

    Article  CAS  PubMed  Google Scholar 

  20. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96(12):926–35.

    Article  CAS  Google Scholar 

  21. Kumar R, Mandal M, Lipton A, Harvey H, Thompson CB. Overexpression of HER2 modulates bcl-2, bcl-XL, and tamoxifen-induced apoptosis in human MCF-7 breast cancer cells. Clin Cancer Res. 1996;2(7):1215–9.

    CAS  PubMed  Google Scholar 

  22. Ali S, Rasool M, Chaoudhry H, Pushparaj NP, Jha P, Hafiz A, Mahfooz M, Abdus Sami G, Azhar Kamal M, Bashir S, Ali A, Sarwar Jamal M. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016;12(3):135–9. https://doi.org/10.6026/97320630012135.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Klinge CM, Riggs KA, Wickramasinghe NS, Emberts CG, McConda DB, Barry PN, Magnusen JE. Estrogen receptor alpha 46 is reduced in tamoxifen resistant breast cancer cells and re-expression inhibits cell proliferation and estrogen receptor alpha 66-regulated target gene transcription. Mol Cell Endocrinol. 2010;323(2):268–76. https://doi.org/10.1016/j.mce.2010.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sobolewski C, Abegg D, Berthou F, Dolicka D, Calo N, Sempoux C, Fournier M, Maeder C, Ay AS, Clavien PA, Humar B, Dufour JF, Adibekian A, Foti M. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut. 2020. https://doi.org/10.1136/gutjnl-2019-319019.

    Article  PubMed  Google Scholar 

  25. Rehman I, Azzouzi AR, Cross SS, Deloulme JC, Catto JW, Wylde N, Larre S, Champigneuille J, Hamdy FC. Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions. Hum Pathol. 2004;35(11):1385–91. https://doi.org/10.1016/j.humpath.2004.07.015.

    Article  CAS  PubMed  Google Scholar 

  26. Liu XG, Wang XP, Li WF, Yang S, Zhou X, Li SJ, Li XJ, Hao DY, Fan ZM. Ca2+-binding protein S100A11: a novel diagnostic marker for breast carcinoma. Oncol Rep. 2010;23(5):1301–8. https://doi.org/10.3892/or_00000764.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Wang Z, Liu W, Lei R, Shan J, Li L, Wang X. Distinct prognostic values of S100 mRNA expression in breast cancer. Sci Rep. 2017;7:39786. https://doi.org/10.1038/srep39786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717. https://doi.org/10.1016/S0140-6736(05)66544-0.

    Article  CAS  Google Scholar 

  29. Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM, Kilpatrick LE, Billheimer DD, Blackman RK, Cardasis HL, Carr SA, Clauser KR, Jaffe JD, Kowalski KA, Neubert TA, Regnier FE, Schilling B, Tegeler TJ, Wang M, Wang P, Whiteaker JR, Zimmerman LJ, Fisher SJ, Gibson BW, Kinsinger CR, Mesri M, Rodriguez H, Stein SE, Tempst P, Paulovich AG, Liebler DC, Spiegelman C. Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J Proteome Res. 2010;9(2):761–76. https://doi.org/10.1021/pr9006365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bian Y, Zheng R, Bayer FP, Wong C, Chang YC, Meng C, Zolg DP, Reinecke M, Zecha J, Wiechmann S, Heinzlmeir S, Scherr J, Hemmer B, Baynham M, Gingras AC, Boychenko O, Kuster B. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat Commun. 2020;11(1):157. https://doi.org/10.1038/s41467-019-13973-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gry M, Rimini R, Stromberg S, Asplund A, Ponten F, Uhlen M, Nilsson P. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics. 2009;10:365. https://doi.org/10.1186/1471-2164-10-365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep. 2015;5:10775. https://doi.org/10.1038/srep10775.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003;4(9):117. https://doi.org/10.1186/gb-2003-4-9-117.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535–50. https://doi.org/10.1016/j.cell.2016.03.014.

    Article  CAS  PubMed  Google Scholar 

  35. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68(18):3033–46. https://doi.org/10.1007/s00018-011-0735-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim JA, Choi DK, Min JS, Kang I, Kim JC, Kim S, Ahn JK. VBP1 represses cancer metastasis by enhancing HIF-1alpha degradation induced by pVHL. FEBS J. 2018;285(1):115–26. https://doi.org/10.1111/febs.14322.

    Article  CAS  PubMed  Google Scholar 

  37. Malouf GG, Su X, Yao H, Gao J, Xiong L, He Q, Comperat E, Couturier J, Molinie V, Escudier B, Camparo P, Doss DJ, Thompson EJ, Khayat D, Wood CG, Yu W, Teh BT, Weinstein J, Tannir NM. Next-generation sequencing of translocation renal cell carcinoma reveals novel RNA splicing partners and frequent mutations of chromatin-remodeling genes. Clin Cancer Res. 2014;20(15):4129–40. https://doi.org/10.1158/1078-0432.CCR-13-3036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ura B, Monasta L, Arrigoni G, Franchin C, Radillo O, Peterlunger I, Ricci G, Scrimin F. A proteomic approach for the identification of biomarkers in endometrial cancer uterine aspirate. Oncotarget. 2017;8(65):109536–45. https://doi.org/10.18632/oncotarget.22725.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang D, Liu H, Ren C, Wang L. High expression of ABRACL is associated with tumorigenesis and affects clinical outcome in gastric cancer. Genet Test Mol Biomarkers. 2019;23(2):91–7. https://doi.org/10.1089/gtmb.2018.0195.

    Article  CAS  PubMed  Google Scholar 

  40. Guo F, Li Y, Liu Y, Wang J, Li G. ARL6IP1 mediates cisplatin-induced apoptosis in CaSki cervical cancer cells. Oncol Rep. 2010;23(5):1449–555.

    CAS  PubMed  Google Scholar 

  41. Guo F, Liu Y, Li Y, Li G. Inhibition of ADP-ribosylation factor-like 6 interacting protein 1 suppresses proliferation and reduces tumor cell invasion in CaSki human cervical cancer cells. Mol Biol Rep. 2010;37(8):3819–25. https://doi.org/10.1007/s11033-010-0037-y.

    Article  CAS  PubMed  Google Scholar 

  42. Kanojia D, Zhou W, Zhang J, Jie C, Lo PK, Wang Q, Chen H. Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics. 2012;12(22):3407–15. https://doi.org/10.1002/pmic.201200103.

    Article  CAS  PubMed  Google Scholar 

  43. Tripathi SC, Matta A, Kaur J, Grigull J, Chauhan SS, Thakar A, Shukla NK, Duggal R, Choudhary AR, Dattagupta S, Sharma MC, Ralhan R, Siu KW. Overexpression of prothymosin alpha predicts poor disease outcome in head and neck cancer. PLoS ONE. 2011;6(5):e19213. https://doi.org/10.1371/journal.pone.0019213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ha SY, Song DH, Hwang SH, Cho SY, Park CK. Expression of prothymosin alpha predicts early recurrence and poor prognosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2015;14(2):171–7.

    Article  Google Scholar 

  45. Abdel-Hafiz HA, Horwitz KB. Role of epigenetic modifications in luminal breast cancer. Epigenomics. 2015;7(5):847–62. https://doi.org/10.2217/epi.15.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abdel-Hafiz HA. Epigenetic mechanisms of tamoxifen resistance in luminal breast cancer. Diseases. 2017. https://doi.org/10.3390/diseases5030016.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lanzetti L, Di Fiore PP. Behind the scenes: endo/exocytosis in the acquisition of metastatic traits. Can Res. 2017;77(8):1813–7. https://doi.org/10.1158/0008-5472.CAN-16-3403.

    Article  CAS  Google Scholar 

  48. Hunter MC, O'Hagan KL, Kenyon A, Dhanani KC, Prinsloo E, Edkins AL. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS ONE. 2014;9(1):e86842. https://doi.org/10.1371/journal.pone.0086842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Holmstrom MO, Martinenaite E, Ahmad SM, Met O, Friese C, Kjaer L, Riley CH, Thor Straten P, Svane IM, Hasselbalch HC, Andersen MH. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia. 2018;32(2):429–37. https://doi.org/10.1038/leu.2017.214.

    Article  CAS  PubMed  Google Scholar 

  50. Hsu KS, Kao HY. Alpha-actinin 4 and tumorigenesis of breast cancer. Vitam Horm. 2013;93:323–51. https://doi.org/10.1016/B978-0-12-416673-8.00005-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bikdeli B, Madhavan MV, Gupta A, Jimenez D, Burton JR, Der Nigoghossian C, Chuich T, Nouri SN, Dreyfus I, Driggin E, Sethi S, Sehgal K, Chatterjee S, Ageno W, Madjid M, Guo Y, Tang LV, Hu Y, Bertoletti L, Giri J, Cushman M, Quere I, Dimakakos EP, Gibson CM, Lippi G, Favaloro EJ, Fareed J, Tafur AJ, Francese DP, Batra J, Falanga A, Clerkin KJ, Uriel N, Kirtane A, McLintock C, Hunt BJ, Spyropoulos AC, Barnes GD, Eikelboom JW, Weinberg I, Schulman S, Carrier M, Piazza G, Beckman JA, Leon MB, Stone GW, Rosenkranz S, Goldhaber SZ, Parikh SA, Monreal M, Krumholz HM, Konstantinides SV, Weitz JI, Lip GYH, Global C-TCG. Pharmacological agents targeting thromboinflammation in COVID-19: review and implications for future research. Thromb Haemost. 2020. https://doi.org/10.1055/s-0040-1713152.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65(11):904–10. https://doi.org/10.1002/iub.1216.

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y, Han X, Gao B. Knockdown of S100A11 expression suppresses ovarian cancer cell growth and invasion. Exp Ther Med. 2015;9(4):1460–4. https://doi.org/10.3892/etm.2015.2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie R, Liu J, Yu X, Li C, Wang Y, Yang W, Hu J, Liu P, Sui H, Liang P, Huang X, Wang L, Bai Y, Xue Y, Zhu J, Fang T. ANXA2 silencing inhibits proliferation, invasion, and migration in gastric cancer cells. J Oncol. 2019;2019:4035460. https://doi.org/10.1155/2019/4035460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen CY, Lin YS, Chen CH, Chen YJ. Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma. J Biomed Sci. 2018;25(1):30. https://doi.org/10.1186/s12929-018-0430-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Basakran NS. CD44 as a potential diagnostic tumor marker. Saudi Med J. 2015;36(3):273–9. https://doi.org/10.15537/smj.2015.3.9622.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Le Y, Kan A, Li QJ, He MK, Chen HL, Shi M. NAP1L1 is a prognostic biomarker and contribute to doxorubicin chemotherapy resistance in human hepatocellular carcinoma. Cancer Cell Int. 2019;19:228. https://doi.org/10.1186/s12935-019-0949-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim K, Kim MJ, Kim KH, Ahn SA, Kim JH, Cho JY, Yeo SG. C1QBP is upregulated in colon cancer and binds to apolipoprotein A-I. Exp Ther Med. 2017;13(5):2493–500. https://doi.org/10.3892/etm.2017.4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Y, Fu D, Su J, Chen Y, Qi C, Sun Y, Niu Y, Zhang N, Yue D. C1QBP suppresses cell adhesion and metastasis of renal carcinoma cells. Sci Rep. 2017;7(1):999. https://doi.org/10.1038/s41598-017-01084-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guinde J, Frankel D, Perrin S, Delecourt V, Levy N, Barlesi F, Astoul P, Roll P, Kaspi E. Lamins in lung cancer: biomarkers and key factors for disease progression through miR-9 regulation? Cells. 2018. https://doi.org/10.3390/cells7070078.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Irianto J, Pfeifer CR, Ivanovska IL, Swift J, Discher DE. Nuclear lamins in cancer. Cell Mol Bioeng. 2016;9(2):258–67. https://doi.org/10.1007/s12195-016-0437-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge DBT, Govt. of India and DST, Govt. of India, for funding. We also acknowledge the Director, Institute of Life Sciences, for the core grant as well as his support in the performance of this project.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study, or acquisition of data, or analysis and interpretation of data: KK, SK, DKP, and SKM. Drafting the article or revising it critically for important intellectual content: KK and SK. Final approval of the version to be submitted: KK, SK, DKP, and SKM.

Corresponding author

Correspondence to Sandip K. Mishra.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12282_2020_1166_MOESM1_ESM.pdf

Supplementary file1 Figure S1. Pathway analysis of differentially expressed proteins in tamoxifen resistant MCF-7 cells. Figure shows biological process regulating network analysis of total deferentially expressed proteins in tamoxifen resistant MCF-7 breast cancer cells. Edges (connecting line) describes the kappa score, the thicker the line, higher is the confidence of the kappa score (interaction), the threshold used kappa score for the formation of the network is 0.5 which is already too high for any network. Size of the nodes (circles) depicts the number of genes involved in the process and color of the nodes describes the confidence of the corrected P-value identified. Darker the color, more is the confidence of the identified process in the interaction network. Figure S2. Expression of genes encoding differentially expressed proteins in MTR cells that are significantly associated with overall patient survival. Survival curves show the significant association of genes encoding ANO8, PLP2, ARL6IP1, VBP1 and PTMA with breast cancer patient survival as studied using KM plotter database. HR: Hazard Ratio. Figure S3. Survival curves of genes encoding differentially expressed proteins in MTR cells that are not significantly associated with overall patient survival. Graphs show the non-significant association of genes encoding SH3BGRL3, RHOA, PEA15, AK1, HSPA5, FSCN1, OA48, HSPA1L, CP94 and ABRACL. Figure S4. Correlation graphs for expression of genes encoding ANO8, PLP2, ARL6IP1 and VBP1 with ERα expression in primary breast tumor samples. Using MERAV database, correlation for expression of ANO8, PLP2, ARL6IP1 and VBP1 with ERα was calculated as displayed in the graphs. Figure S5. Protein-protein interaction network for differentially expressed proteins in EZH2 knockdown in MTR cells. Differentially over-expressed and down-regulated proteins were used to identify PPI network for biological processes, molecular functions and cellular component analysis. The connection line-width defines the co-expression the interacting partner proteins in the cellular system. Darker the color, more is the confidence of the identified process in the interaction network. Figure S6. EZH2 knockdown increases the sensitivity of tamoxifen resistant cells towards tamoxifen. Line graph shows the percent cell inhibition in siControl and siEZH2 transfected MTR cells. By taking the log concentrations of tamoxifen and the relative percent absorbance values mentioned below the figure were used to calculate the IC50 value for tamoxifen in both the groups. (PDF 9304 kb)

Supplementary file2 (XLSX 97 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Kumar, S., Parida, D.K. et al. EZH2 knockdown in tamoxifen-resistant MCF-7 cells unravels novel targets for regaining sensitivity towards tamoxifen. Breast Cancer 28, 355–367 (2021). https://doi.org/10.1007/s12282-020-01166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-020-01166-0

Keywords

Navigation