Skip to main content

Advertisement

Log in

Eprinomectin: a derivative of ivermectin suppresses growth and metastatic phenotypes of prostate cancer cells by targeting the β-catenin signaling pathway

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Prostate cancer (PCa) is the second leading cause of cancer death among men in the USA. The emergence of resistance to androgen deprivation therapy gives rise to metastatic castration-resistant prostate cancer. Eprinomectin (EP) is a member of a family of drugs called avermectins with parasiticide and anticancer properties. The pupose of this study was to evaluate the anticancer effects of EP against metastatic PCa using cellular models. 

Methods

In this study, we have investigated the effect of EP’s anticancer properties and delineated the underlying mechanisms in the DU145 cellular model using several assays such as cell viability assay, colony formation assay, wound-healing assay, immunofluorescence, apoptosis assay, cell cycle analysis, and immunoblotting.

Results

Our results indicate that EP significantly inhibits the cell viability, colony formation, and migration capacities of DU145 cells. EP induces cell cycle arrest at the G0/G1 phase, apoptosis via the activation of different caspases, and autophagy through the increase in the generation of reactive oxygen species and endoplasmic reticulum stress. In addition, EP downregulates the expression of cancer stem cell markers and mediates the translocation of β-catenin from the nucleus to the cytoplasm, indicating its role in inhibiting downstream target genes such as c-Myc and cyclin D1.

Conclusion

Our study shows that EP has tremendous potential to target metastatic PCa cells and provides new avenues for therapeutic approaches for advanced PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data availability

The data represented here are available upon request from the corresponding author.

References

  • Bincoletto C, Bechara A, Pereira GJ, Santos CP, Antunes F, Peixoto da-Silva J, Muler M, Gigli RD, Monteforte PT, Hirata H, Jurkiewicz A, Smaili SS (2013) Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies. Chem Biol Interact 206:279–288

    CAS  PubMed  Google Scholar 

  • Boyer-Guittaut M, Poillet L, Liang Q, Bole-Richard E, Ouyang X, Benavides GA, Chakrama FZ, Fraichard A, Darley-Usmar VM, Despouy G, Jouvenot M, Delage-Mourroux R, Zhang J (2014) The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 10:986–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnapaka S, Zheng G, Chen A, Munirathinam G (2019) Nitro aspirin (NCX4040) induces apoptosis in PC3 metastatic prostate cancer cells via hydrogen peroxide (H2O2)-mediated oxidative stress. Free Radic Biol Med 143:494–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari S, Alpa Samy A, Kajdacsy-Balla M, Bosland C, Munirathinam G (2018a) Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling. Food Chem Toxicol 115:218–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari S, Alpa Samy P, Narvekar VS, Dontaraju R, Dasari AK, Munirathinam G (2018b) Polygodial analog induces apoptosis in LNCaP prostate cancer cells. Eur J Pharmacol 828:154–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari S, Bakthavachalam V, Chinnapaka S, Venkatesan R, Samy A, Munirathinam G (2020) Neferine, an alkaloid from lotus seed embryo targets HeLa and SiHa cervical cancer cells via pro-oxidant anticancer mechanism. Phytother Res 34:2366–2384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AH, Zoubeidi A (2021) Targeting androgen receptor signaling: a historical perspective. Endocr Relat Cancer 28:T11–T18

    CAS  PubMed  Google Scholar 

  • de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34:200–211

    PubMed  Google Scholar 

  • Derakhshan A, Chen Z, Van Waes C (2017) Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res 23:1379–1387

    CAS  PubMed  Google Scholar 

  • Dong L, Zieren RC, Xue W, de Reijke TM, Pienta KJ (2019) Metastatic prostate cancer remains incurable, why? Asian J Urol 6:26–41

    PubMed  Google Scholar 

  • Gao F, Sun Z, Kong F, Xiao J (2020) Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 188:112044

    CAS  PubMed  Google Scholar 

  • Gheewala T, Skwor T, Munirathinam G (2018) Photodynamic therapy using pheophorbide and 670nm LEDs exhibits anti-cancer effects in-vitro in androgen dependent prostate cancer. Photodiagnosis Photodyn Ther 21:130–137

    CAS  PubMed  Google Scholar 

  • Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Heo JR, Kim SM, Hwang KA, Kang JH, Choi KC (2018) Resveratrol induced reactive oxygen species and endoplasmic reticulum stressmediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line. Int J Mol Med 42:1427–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwadate Y, Suganami A, Tamura Y, Matsutani T, Hirono S, Shinozaki N, Hiwasa T, Takiguchi M, Saeki N (2017) The pluripotent stem-cell marker alkaline phosphatase is highly expressed in refractory glioblastoma with DNA hypomethylation. Neurosurgery 80:248–256

    PubMed  Google Scholar 

  • Juarez M, Schcolnik-Cabrera A, Duenas-Gonzalez A (2018) The multitargeted drug ivermectin: from an antiparasitic agent to a repositioned cancer drug. Am J Cancer Res 8:317–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur J, Bachhawat AK (2009) A modified Western blot protocol for enhanced sensitivity in the detection of a membrane protein. Anal Biochem 384:348–349

    CAS  PubMed  Google Scholar 

  • Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    CAS  PubMed  Google Scholar 

  • Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M, Hanash SM, Yoshihara K, Wei Z, Tien JC, Rangel R, Hashimoto K, Mabuchi S, Sawada K, Kimura T, Copeland NG, Jenkins NA (2017) In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A 114:E7301–E7310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kranz P, Neumann F, Wolf A, Classen F, Pompsch M, Ocklenburg T, Baumann J, Janke K, Baumann M, Goepelt K, Riffkin H, Metzen E, Brockmeier U (2017) PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis 8:e2986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kypta RM, Waxman J (2012) Wnt/beta-catenin signalling in prostate cancer. Nat Rev Urol 9:418–428

    CAS  PubMed  Google Scholar 

  • Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542

    CAS  PubMed  Google Scholar 

  • Li D, Lv H, Hao X, Hu B, Song Y (2018) Prognostic value of serum alkaline phosphatase in the survival of prostate cancer: evidence from a meta-analysis. Cancer Manag Res 10:3125–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG (2021) Repositioning of antiparasitic drugs for tumor treatment. Front Oncol 11:670804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ruiz i Altaba A (2014) The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med 6:1263–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N (2019) Short overview of ros as cell function regulators and their implications in therapy concepts. Cells 8:793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari G, Kujawski M, Scuto A, Soloneski S, Larramendy ML (2013) DNA damage kinetics and apoptosis in ivermectin-treated Chinese hamster ovary cells. J Appl Toxicol 33:1260–1267

    CAS  PubMed  Google Scholar 

  • Mulcahy Levy JM, Thorburn A (2020) Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ 27:843–857

    PubMed  Google Scholar 

  • Murillo-Garzon V, Kypta R (2017) WNT signalling in prostate cancer. Nat Rev Urol 14:683–696

    CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    CAS  PubMed  Google Scholar 

  • Rashid HO, Yadav RK, Kim HR, Chae HJ (2015) ER stress: autophagy induction, inhibition and selection. Autophagy 11:1956–1977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rawla P (2019) Epidemiology of prostate cancer. World J Oncol 10:63–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samy A, Bakthavachalam V, Vudutha M, Vinjamuri S, Chinnapaka S, Munirathinam G (2020) Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis. Toxicol Appl Pharmacol 401:115071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santer FR, Erb HH, Oh SJ, Handle F, Feiersinger GE, Luef B, Bu H, Schafer G, Ploner C, Egger M, Rane JK, Maitland NJ, Klocker H, Eder IE, Culig Z (2015) Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget 6:6105–6122

    PubMed  PubMed Central  Google Scholar 

  • Shang S, Hua F, Hu ZW (2017) The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972–33989

    PubMed  PubMed Central  Google Scholar 

  • Shoop WL, DeMontigny P, Fink DW, Williams JB, Egerton JR, Mrozik H, Fisher MH, Skelly BJ, Turner MJ (1996) Efficacy in sheep and pharmacokinetics in cattle that led to the selection of eprinomectin as a topical endectocide for cattle. Int J Parasitol 26:1227–1235

    CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    PubMed  Google Scholar 

  • Stoddart MJ (2011) Cell viability assays: introduction. Methods Mol Biol 740:1–6

    CAS  PubMed  Google Scholar 

  • Teo MY, Rathkopf DE, Kantoff P (2019) Treatment of advanced prostate cancer. Annu Rev Med 70:479–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace KL, Landsteiner A, Bunner SH, Engel-Nitz NM, Luckenbaugh AN (2021) Increasing prevalence of metastatic castration-resistant prostate cancer in a managed care population in the United States. Cancer Causes Control 32:1365–1374

    PubMed  Google Scholar 

  • Wong YK, Xu C, Kalesh KA, He Y, Lin Q, Wong WSF, Shen HM, Wang J (2017) Artemisinin as an anticancer drug: recent advances in target profiling and mechanisms of action. Med Res Rev 37:1492–1517

    CAS  PubMed  Google Scholar 

  • Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44:2144–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang X (2020) Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol 13:165

    PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang Y, Chen Z, Kim S, Iqbal S, Chi A, Ritenour C, Wang YA, Kucuk O, Wu D (2013) Genistein enhances the efficacy of cabazitaxel chemotherapy in metastatic castration-resistant prostate cancer cells. Prostate 73:1681–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang G, Zhai W, Zhao Z, Wang S, Yi J (2020) Inhibition of TMEM16A Ca(2+)-activated Cl(−) channels by avermectins is essential for their anticancer effects. Pharmacol Res 156:104763

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is partly supported by the Master in Medical Biotechnology Program, Department of Biomedical Science, UICOM, Rockford, IL.

Funding

This study is partly supported by the Master’s in Medical Biotechnology Program, Department of Biomedical Science, UICOM, Rockford, IL.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.S., M.H., and G.M.; methodology, A.S., M.H., and G.M.; writing original draft, A.S., M.H., writing, review, and editing A.S., M.H., and G.M.; supervision, G.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gnanasekar Munirathinam.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samy, A., Hussein, M.A. & Munirathinam, G. Eprinomectin: a derivative of ivermectin suppresses growth and metastatic phenotypes of prostate cancer cells by targeting the β-catenin signaling pathway. J Cancer Res Clin Oncol 149, 9085–9104 (2023). https://doi.org/10.1007/s00432-023-04829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04829-5

Keywords

Navigation