Skip to main content

Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint

  • Protocol
  • First Online:
Cancer Drug Resistance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1395))

Abstract

Cancer drug resistance leading to therapeutic failure in the treatment of many cancers encompasses various mechanisms and may be intrinsic relying on the patient’s genetic makeup or be acquired by tumors that are initially sensitive to cancer drugs. All in all, it may be responsible for treatment failure in over 90 % of patients with metastatic cancer. Cancer drug resistance, in particular acquired resistance, may stem from the micro-clonality/micro-genetic heterogeneity of the tumors whereby, among others, the following mechanisms may entail resistance: altered expression of drug influx/efflux transporters in the tumor cells mediating lower drug uptake and/or greater efflux of the drug; altered role of DNA repair and impairment of apoptosis; role of epigenomics/epistasis by methylation, acetylation, and altered levels of microRNAs leading to alterations in upstream or downstream effectors; mutation of drug targets in targeted therapy and alterations in the cell cycle and checkpoints; and tumor microenvironment that are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  2. Rodrigues AS, Dinis J, Gromicho M, Martins M, Laires A, Rueff J (2012) Genomics and cancer drug resistance. Curr Pharm Biotechnol 13:651–673

    Article  CAS  PubMed  Google Scholar 

  3. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  4. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292

    Article  CAS  PubMed  Google Scholar 

  6. Cooper RA, Straus DJ (2012) Clinical guidelines, the politics of value, and the practice of medicine: physicians at the crossroads. J Oncol Pract 8:233–235

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8:E101–E111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palma BB, Silva ESM, Urban P, Rueff J, Kranendonk M (2013) Functional characterization of eight human CYP1A2 variants: the role of cytochrome b5. Pharmacogenet Genomics 23:41–52

    Article  CAS  PubMed  Google Scholar 

  9. Higgins MJ, Rae JM, Flockhart DA, Hayes DF, Stearns V (2009) Pharmacogenetics of tamoxifen: who should undergo CYP2D6 genetic testing? J Natl Compr Canc Netw 7:203–213

    CAS  PubMed  Google Scholar 

  10. Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:105–117

    CAS  PubMed  Google Scholar 

  11. Polyak K (2011) Heterogeneity in breast cancer. J Clin Invest 121:3786–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salk JJ, Fox EJ, Loeb LA (2010) Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Pathol 5:51–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baguley BC (2011) The paradox of cancer cell apoptosis. Front Biosci (Landmark Ed) 16:1759–1767

    Article  CAS  Google Scholar 

  14. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345

    Article  CAS  PubMed  Google Scholar 

  15. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castano Z, Fillmore CM, Kim CF, McAllister SS (2012) The bed and the bugs: interactions between the tumor microenvironment and cancer stem cells. Semin Cancer Biol 22:462–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma SV, Settleman J (2007) Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 21:3214–3231

    Article  CAS  PubMed  Google Scholar 

  18. Fleck LM (2013) “Just caring”: can we afford the ethical and economic costs of circumventing cancer drug resistance? J Pers Med 3:124–143

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weinstein IB (2000) Disorders in cell circuitry during multistage carcinogenesis: the role of homeostasis. Carcinogenesis 21:857–864

    Article  CAS  PubMed  Google Scholar 

  20. Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68:3077–3080, discussion 3080

    Article  CAS  PubMed  Google Scholar 

  21. Weinstein IB, Joe AK (2006) Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3:448–457

    Article  CAS  PubMed  Google Scholar 

  22. Weinstein IB (2002) Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  23. Borst P (2012) Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol 2:120066

    Article  PubMed  PubMed Central  Google Scholar 

  24. da Silva SD, Hier M, Mlynarek A, Kowalski LP, Alaoui-Jamali MA (2012) Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol 3:149

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim JE, Leung E, Baguley BC, Finlay GJ (2013) Heterogeneity of expression of epithelial-mesenchymal transition markers in melanocytes and melanoma cell lines. Front Genet 4:97

    PubMed  PubMed Central  Google Scholar 

  26. Tien JC, Xu J (2012) Steroid receptor coactivator-3 as a potential molecular target for cancer therapy. Expert Opin Ther Targets 16:1085–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma G, Ren Y, Wang K, He J (2011) SRC-3 has a role in cancer other than as a nuclear receptor coactivator. Int J Biol Sci 7:664–672

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK (2013) Mechanisms of drug resistance in cancer chemotherapy: coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr Pharm Des 19:7126–7140

    Article  CAS  PubMed  Google Scholar 

  29. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26:39–57

    Article  CAS  PubMed  Google Scholar 

  30. Lemos C, Jansen G, Peters GJ (2008) Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 98:857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung KA, Choi BH, Kwak MK (2015) The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol 87:465–476

    Article  PubMed  Google Scholar 

  32. Marie JP, Zittoun R, Sikic BI (1991) Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood 78:586–592

    CAS  PubMed  Google Scholar 

  33. Legrand O, Simonin G, Perrot JY, Zittoun R, Marie JP (1998) Pgp and MRP activities using calcein-AM are prognostic factors in adult acute myeloid leukemia patients. Blood 91:4480–4488

    CAS  PubMed  Google Scholar 

  34. Wuchter C, Leonid K, Ruppert V, Schrappe M, Buchner T, Schoch C, Haferlach T, Harbott J, Ratei R, Dorken B, Ludwig WD (2000) Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica 85:711–721

    CAS  PubMed  Google Scholar 

  35. Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D, Marie JP, Legrand O (2004) Breast cancer resistance protein and P-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res 10:7896–7902

    Article  CAS  PubMed  Google Scholar 

  36. Steinbach D, Legrand O (2007) ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia 21:1172–1176

    Article  CAS  PubMed  Google Scholar 

  37. Steinbach D, Furchtbar S, Sell W, Lengemann J, Hermann J, Zintl F, Sauerbrey A (2003) Contrary to adult patients, expression of the multidrug resistance gene (MDR1) fails to define a poor prognostic group in childhood AML. Leukemia 17:470–471

    Article  CAS  PubMed  Google Scholar 

  38. Gromicho M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, Tavares P, Laires A, Rueff J, Sebastiao RA (2013) Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep 29:741–750

    CAS  PubMed  Google Scholar 

  39. Gromicho M, Dinis J, Magalhães M, Fernandes A, Tavares P, Laires A, Rueff J, Rodrigues A (2011) Development of imatinib and dasatinib resistance: dynamics of the drug transporters expression ABCB1, ABCC1, ABCG2, MVP and SLC22A1. Leuk Lymphoma 52:1980–1990

    Article  CAS  PubMed  Google Scholar 

  40. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ohta K, Hoshino H, Wang J, Ono S, Iida Y, Hata K, Huang SK, Colquhoun S, Hoon DS (2015) MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6:3211–3224

    Article  PubMed  Google Scholar 

  42. Haenisch S, Werk AN, Cascorbi I (2014) MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol 77:587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silva S, Moita R, Azevedo A, Gouveia R, Manita I, Pina J, Rueff J, Gaspar J (2007) Menopausal age and XRCC1 gene polymorphisms: role in breast cancer risk. Cancer Detect Prev 31:303–309

    Article  CAS  PubMed  Google Scholar 

  44. Bastos HN, Antao MR, Silva SN, Azevedo AP, Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, Rueff J, Gaspar JF (2009) Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid 19:1067–1075

    Article  CAS  PubMed  Google Scholar 

  45. Conde J, Silva S, Azevedo A, Teixeira V, Pina J, Rueff J, Gaspar J (2009) Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study. BMC Cancer 9:344

    Article  PubMed  PubMed Central  Google Scholar 

  46. Santos LS, Gomes BC, Gouveia R, Silva SN, Azevedo AP, Camacho V, Manita I, Gil OM, Ferreira TC, Limbert E, Rueff J, Gaspar JF (2013) The role of CCNH Val270Ala (rs2230641) and other nucleotide excision repair polymorphisms in individual susceptibility to well-differentiated thyroid cancer. Oncol Rep 30:2458–2466

    CAS  PubMed  Google Scholar 

  47. Santos LS, Branco SC, Silva SN, Azevedo AP, Gil OM, Manita I, Ferreira TC, Limbert E, Rueff J, Gaspar JF (2012) Polymorphisms in base excision repair genes and thyroid cancer risk. Oncol Rep 28:1859–1868

    CAS  PubMed  Google Scholar 

  48. Gomes BC, Silva SN, Azevedo AP, Manita I, Gil OM, Ferreira TC, Limbert E, Rueff J, Gaspar JF (2010) The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep 24:1079–1085

    CAS  PubMed  Google Scholar 

  49. Silva SN, Tomar M, Paulo C, Gomes BC, Azevedo AP, Teixeira V, Pina JE, Rueff J, Gaspar JF (2010) Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol 34:85–92

    Article  CAS  PubMed  Google Scholar 

  50. Silva SN, Gomes BC, Rueff J, Gaspar JF (2011) DNA repair perspectives in thyroid and breast cancer: the role of DNA repair polymorphisms. In: Vengrova S (ed) DNA repair and human health. InTech. doi:10.5772/22944

    Google Scholar 

  51. Rodrigues AS, Gomes BC, Martins C, Gromicho M, Oliveira NG, Guerreiro PS, Rueff J (2013) DNA repair and resistance to cancer therapy. In: Chen C (ed) DNA repair and resistance to cancer therapy, new research directions in DNA repair. Intech. doi:10.5772/53952

    Google Scholar 

  52. Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN, Arun BK (2008) Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol 26:4282–4288

    Article  PubMed  Google Scholar 

  53. Akashi-Tanaka S, Watanabe C, Takamaru T, Kuwayama T, Ikeda M, Ohyama H, Mori M, Yoshida R, Hashimoto R, Terumasa S, Enokido K, Hirota Y, Okuyama H, Nakamura S (2015) BRCAness predicts resistance to taxane-containing regimens in triple negative breast cancer during neoadjuvant chemotherapy. Clin Breast Cancer 15:80–85

    Article  CAS  PubMed  Google Scholar 

  54. Dietlein F, Reinhardt HC (2014) Molecular pathways: exploiting tumor-specific molecular defects in DNA repair pathways for precision cancer therapy. Clin Cancer Res 20:5882–5887

    Article  CAS  PubMed  Google Scholar 

  55. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386(761):763

    Google Scholar 

  56. Dexheimer TS (2013) DNA repair pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM (eds) DNA repair of cancer stem cells. Springer, Dordrecht, Netherlands, pp 19–32. doi:10.1007/978-94-007-4590-2_2

    Chapter  Google Scholar 

  57. Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27:323–331

    Article  CAS  PubMed  Google Scholar 

  58. Alluri PG, Speers C, Chinnaiyan AM (2014) Estrogen receptor mutations and their role in breast cancer progression. Breast Cancer Res 16:494

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garcia-Becerra R, Santos N, Diaz L, Camacho J (2012) Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 14:108–145

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yan J, Tsai SY, Tsai MJ (2006) SRC-3/AIB1: transcriptional coactivator in oncogenesis. Acta Pharmacol Sin 27:387–394

    Article  PubMed  Google Scholar 

  61. Wilting RH, Dannenberg J-H (2012) Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 15:21–38

    Article  CAS  PubMed  Google Scholar 

  62. Theodora F (2014) Tumor plasticity driven by spatial micro-heterogeneity in the tumor microenvironment contributes to therapy resistance. J Carcinog Mutagen. doi: 10.4172/2157-2518.S8-006

    Google Scholar 

  63. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532

    Article  CAS  PubMed  Google Scholar 

  64. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    CAS  PubMed  Google Scholar 

  65. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Srivastava S, Grizzle WE (2010) Biomarkers and the genetics of early neoplastic lesions. Cancer Biomark 9:41–64

    PubMed  PubMed Central  Google Scholar 

  67. Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T, Eng C (2006) Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 78:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Playford RJ (2001) Landscaper seeks remunerative position. Gut 48:594–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cgar N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  Google Scholar 

  71. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  72. Haber DA, Gray NS, Baselga J (2011) The evolving war on cancer. Cell 145:19–24

    Article  CAS  PubMed  Google Scholar 

  73. Kaiser J (2011) Combining targeted drugs to stop resistant tumors. Science 331:1542–1545

    Article  CAS  PubMed  Google Scholar 

  74. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  75. Ramos P, Bentires-Alj M (2015) Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene 34:3617–3626

    Article  CAS  PubMed  Google Scholar 

  76. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, Traulsen A, Nowak MA, Siegel C, Velculescu VE, Kinzler KW, Vogelstein B, Willis J, Markowitz SD (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105:4283–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci U S A 110:1999–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, Allen B, Bozic I, Reiter JG, Nowak MA, Kinzler KW, Oliner KS, Vogelstein B (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS, Yaqubie A, Kelly N, Le DT, Lipson EJ, Chapman PB, Diaz LA Jr, Vogelstein B, Nowak MA (2013) Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2:e00747

    Article  PubMed  PubMed Central  Google Scholar 

  80. Komarova NL, Katouli AA, Wodarz D (2009) Combination of two but not three current targeted drugs can improve therapy of chronic myeloid leukemia. PLoS One 4:e4423

    Article  PubMed  PubMed Central  Google Scholar 

  81. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Pestka A, Andergassen U, Meier-Stiegen F, Czyz ZT, Alberter B, Treitschke S, Schamberger T, Sergio M, Bregola G, Doffini A, Gianni S, Calanca A, Signorini G, Bolognesi C, Hartmann A, Fasching PA, Sandri MT, Rack B, Fehm T, Giorgini G, Manaresi N, Klein CA (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6(11):1371–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Rueff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rueff, J., Rodrigues, A.S. (2016). Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. In: Rueff, J., Rodrigues, A. (eds) Cancer Drug Resistance. Methods in Molecular Biology, vol 1395. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3347-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3347-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3345-7

  • Online ISBN: 978-1-4939-3347-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics