Skip to main content
Log in

Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) hold great application potential for solid-state lithium metal battery because of the excellent interfacial contact and processibility, but being hampered by the poor room-temperature conductivity (∼ 10−7 S·cm−1) and low lithium-ion transference number \(({t_{{\rm{L}}{{\rm{i}}^ + }}})\). Here, a lamellar composite solid electrolyte (Vr-NH2@polyvinylidene fluoride (PVDF) LCSE) with β-conformation PVDF is fabricated by confining PVDF in the interlayer channel of -NH2 modified vermiculite lamellar framework. We demonstrate that the conformation of PVDF can be manipulated by the nanoconfinement effect and the interaction from channel wall. The presence of -NH2 groups could induce the formation of β-conformation PVDF through electrostatic interaction, which serves as continuous and rapid lithium-ion transfer pathway. As a result, a high room-temperature ionic conductivity of 1.77 × 10−4 S·cm−1 is achieved, 1–2 orders of magnitude higher than most SPEs. Furthermore, Vr-NH2@PVDF LCSE shows a high \({t_{{\rm{L}}{{\rm{i}}^ + }}}\) of 0.68 because of the high dielectric constant, ∼ 3 times of that of PVDF SPE, and surpassing most of reported SPEs. The LiNi0.8Co0.1Mn0.1O2∥Li cell assembled by Vr-NH2@PVDF LCSE obtains a discharge specific capacity of 137.1 mA·hg−1 after 150 cycles with a capacity retention rate of 93% at 1 C and 25 °C. This study may pave a new avenue for high-performance SPEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

    Article  CAS  PubMed  Google Scholar 

  2. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162.

    Article  CAS  PubMed  Google Scholar 

  3. Lin, X. D.; Zhou, G. D.; Liu, J. P.; Yu, J.; Effat, M. B.; Wu, J. X.; Ciucci, F. Rechargeable battery electrolytes capable of operating over wide temperature windows and delivering high safety. Adv. Energy Mater. 2020, 10, 2001235.

    Article  CAS  Google Scholar 

  4. Qiu, J. L.; Liu, X. Y.; Chen, R. S.; Li, Q. H.; Wang, Y.; Chen, P. H.; Gan, L. Y.; Lee, S. J.; Nordlund, D.; Liu, Y. J. et al. Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 2020, 30, 1909392.

    Article  CAS  Google Scholar 

  5. Lu, X.; Wang, Y. M.; Xu, X. Y.; Yan, B. G.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries—Review. Adv. Energy Mater. 2023, 13, 2301746.

    Article  CAS  Google Scholar 

  6. Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139–164.

    Article  Google Scholar 

  7. Xiao, Z. L.; Zhou, B. H.; Wang, J. R.; Zuo, C.; He, D.; Xie, X. L.; Xue, Z. G. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown ether cavities for alkali metal ion batteries. J. Membr. Sci. 2019, 576, 182–189.

    Article  CAS  Google Scholar 

  8. Liu, H. B.; Sun, Q.; Cheng, J.; Zhang, H. Q.; Xu, X.; Li, Y. Y.; Zeng, Z.; Zhao, Y.; Li, D. P.; Lu, J. Y. et al. Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers. Nano Res. 2023, 16, 12727–12737.

    Article  CAS  Google Scholar 

  9. Kumar, M.; Sekhon, S. S. Role of plasticizer’s dielectric constant on conductivity modification of PEO-NH4F polymer electrolytes. Eur. Polym. J. 2002, 38, 1297–1304.

    Article  CAS  Google Scholar 

  10. Su, Y. T.; Zhang, W. Q.; Lan, J. L.; Sui, G.; Zhang, H. T.; Yang, X. P. Flexible reduced graphene oxide/polyacrylonitrile dielectric nanocomposite films for high-temperature electronics applications. ACS Appl. Nano Mater. 2020, 3, 7005–7015.

    Article  CAS  Google Scholar 

  11. Patil, N.; Oh, J. H.; Khatri, S.; Saed, M. A.; Naraghi, M.; Green, M. J. Radio frequency heating response of polyacrylonitrile (PAN) films and nanofiber mats. ACS Appl. Polym. Mater. 2021, 3, 3125–3130.

    Article  CAS  Google Scholar 

  12. Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: Fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.

    Article  CAS  Google Scholar 

  13. Hu, P.; Chai, J. C.; Duan, Y. L.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4, 10070–10083.

    Article  CAS  Google Scholar 

  14. Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330.

    Article  CAS  Google Scholar 

  15. Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nanoclay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

    Article  CAS  Google Scholar 

  16. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

    Article  CAS  Google Scholar 

  17. Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

    Article  CAS  Google Scholar 

  18. Zhang, Y.; Zhang, L.; Guo, P.; Zhang, C. Y.; Ren, X. C.; Jiang, Z.; Song, J. J.; Shi, C. Porous garnet as filler of solid polymer electrolytes to enhance the performance of solid-state lithium batteries. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-6065-4.

  19. Lu, G. L.; Zhang, Y. J.; Zhang, J. J.; Du, X. F.; Lv, Z. L.; Du, J. Z.; Zhao, Z. M.; Tang, Y.; Zhao, J. W.; Cui, G. L. Trade-offs between ion-conducting and mechanical properties: The case of polyacrylate electrolytes. Carbon Energy 2023, 5, e287.

    Article  CAS  Google Scholar 

  20. Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.

    Article  CAS  Google Scholar 

  21. Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.

    Article  CAS  PubMed  Google Scholar 

  22. Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.

    Article  CAS  Google Scholar 

  23. Mi, J. S.; Ma, J. B.; Chen, L. K.; Lai, C.; Yang, K.; Biao, J.; Xia, H. Y.; Song, X.; Lv, W.; Zhong, G. M. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 2022, 48, 375–383.

    Article  Google Scholar 

  24. Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J. F.; Wu, Z. Y.; Stadler, F. J.; Huang, Y. F. High dielectric poly(vinylidene fluoride)-based polymer enables uniform lithium-ion transport in solid-state ionogel electrolytes. Angew. Chem., Int. Ed. 2023, 62, e202300243.

    Article  CAS  Google Scholar 

  26. Huang, Y. F.; Zeng, J. P.; Li, S. F.; Dai, C.; Liu, J. F.; Liu, C.; He, Y. B. Conformational regulation of dielectric poly(vinylidene fluoride)-based solid-state electrolytes for efficient lithium salt dissociation and lithium-ion transportation. Adv. Energy Mater. 2023, 13, 2203888.

    Article  CAS  Google Scholar 

  27. Liu, Q. Y.; Yang, G. J.; Li, X. Y.; Zhang, S. M.; Chen, R. J.; Wang, X. F.; Gao, Y. R.; Wang, Z. X.; Chen, L. Q. Polymer electrolytes based on interactions between [solvent-Li+] complex and solvent-modified polymer. Energy Storage Mater. 2022, 51, 443–452.

    Article  Google Scholar 

  28. Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Induced formation of dominating polar phases of poly(vinylidene fluoride): Positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B 2014, 118, 9104–9111.

    Article  CAS  PubMed  Google Scholar 

  29. Chu, Z. Z.; Zhao, R. J.; Wang, B.; Liu, L.; Ma, Z.; Li, Y. S. Effect of ions on the flow-induced crystallization of poly(vinylidene fluoride). Macromolecules 2021, 54, 3800–3809.

    Article  CAS  Google Scholar 

  30. Yu, S. S.; Zheng, W. T.; Yu, W. X.; Zhang, Y. J.; Jiang, Q.; Zhao, Z. D. Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 2009, 42, 8870–8874.

    Article  CAS  Google Scholar 

  31. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, J. T.; Liu, Y. R.; Dang, J. C.; Zhou, G. L.; Wang, Y.; Zhang, Y. F.; Qu, L. B.; Wu, W. J. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978.

    Article  Google Scholar 

  33. Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302.

    Article  Google Scholar 

  34. Zhang, Y. F.; Huang, J. J.; Liu, H.; Kou, W. J.; Dai, Y.; Dang, W.; Wu, W. J.; Wang, J. T.; Fu, Y. Z.; Jiang, Z. Y. Lamellar ionic liquid composite electrolyte for wide-temperature solid-state lithium-metal battery. Adv. Energy Mater. 2023, 13, 2300156.

    Article  CAS  Google Scholar 

  35. Zheng, Y. F.; Zhou, Z. F.; Jiao, M. Q.; Wang, L.; Zhang, J.; Wu, W. J.; Wang, J. T. Lamellar membrane with orderly aligned glycine molecules for efficient proton conduction. J. Membr. Sci. 2023, 672, 121433.

    Article  CAS  Google Scholar 

  36. Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

    Article  PubMed  Google Scholar 

  37. Xiang, J. W.; Cheng, Z. X.; Zhao, Y.; Zhang, B.; Yuan, L. X.; Shen, Y.; Guo, Z. Z.; Zhang, Y.; Jiang, J. J.; Huang, Y. H. A lithium-ion pump based on piezoelectric effect for improved rechargeability of lithium metal anode. Adv. Sci. 2019, 6, 1901120.

    Article  CAS  Google Scholar 

  38. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    Article  CAS  Google Scholar 

  39. Martins, P.; Nunes, J. S.; Hungerford, G.; Miranda, D.; Ferreira, A.; Sencadas, V.; Lanceros-Méndez, S. Local variation of the dielectric properties of poly(vinylidene fluoride) during the α- to β-phase transformation. Phys. Lett. A 2009, 373, 177–180.

    Article  CAS  Google Scholar 

  40. Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

    Article  CAS  Google Scholar 

  41. Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.

    Article  CAS  Google Scholar 

  42. Yang, K.; Chen, L. K.; Ma, J. B.; Lai, C.; Huang, Y. F.; Mi, J. S.; Biao, J.; Zhang, D. F.; Shi, P. R.; Xia, H. Y. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi08Co01Mn01O2/ lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 24668–24675.

    Article  CAS  Google Scholar 

  43. Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

    Article  CAS  Google Scholar 

  44. Zhao, Y.; Yang, X. F.; Sun, Q.; Gao, X. J.; Lin, X. T.; Wang, C. H.; Zhao, F. P.; Sun, Y. P.; Adair, K. R.; Li, R. Y. et al. Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Mater. 2018, 15, 415–421.

    Article  Google Scholar 

  45. Wu, M. J.; Song, J. P.; Lei, J. H.; Tang, H. L. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-023-5963-9.

  46. Huang, Y. F.; Gu, T.; Rui, G. C.; Shi, P. R.; Fu, W. B.; Chen, L.; Liu, X. T.; Zeng, J. P.; Kang, B. H.; Yan, Z. C. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 2021, 14, 6021–6029.

    Article  CAS  Google Scholar 

  47. Ryu, H. H.; Namkoong, B.; Kim, J. H.; Belharouak, I.; Yoon, C. S.; Sun, Y. K. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes. ACS Energy Lett. 2021, 6, 2726–2734.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from National Natural Science Foundation of China (No. U2004199), Joint Foundation for Science and Technology Research & Development Plan of Henan Province (Nos. 222301420003 and 232301420038), China Postdoctoral Science Foundation (No. 2022TQ0293), and Key Science and Technology Project of Henan Province (No. 221100240200-06). Center for advanced analysis and computational science, Zhengzhou University is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingchuan Dang or Wenjia Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y., Zhou, S. et al. Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery. Nano Res. 17, 5159–5167 (2024). https://doi.org/10.1007/s12274-024-6439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6439-2

Keywords

Navigation