Skip to main content
Log in

A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes (SPEs), which is difficult to be compatible with lithium anode, leading to inadequate ionic conductivity. Herein, a facile spray drying method is adopted to increase the mass ratio of inorganic particles and solve the aggregation problems of fillers simultaneously. The polyvinylidene fluoride (PVDF) with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) covers the surface of each Li6.4La3Zr1.4Ta0.6O12 (LLZTO) granules during the nebulization process, then forming flat solid electrolytes via layer-by-layer deposition. Characterized by the atomic force microscope, the obtained solid electrolytes achieve a homogenous dispersion of Young’s modulus and surface electric field. As a result, the as-prepared SPEs present high tensile strength of 7.1 MPa, high ionic conductivity of 1.86 × 10−4 S·cm−1 at room temperature, and wide electrochemical window up to 5.0 V, demonstrating increased mechanical strength and uniform lithium-ion migration channels for SPEs. Thanks to the as-prepared SPEs, the lithium-symmetrical cells show a highly stable Li plating/stripping cycling for over 1,000 h at 0.1 mA·cm−2. The corresponding Li/LCoO2 batteries also present good rate capability and excellent cyclic performance with capacity retention of 80% after 100 cycles at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, J.; Chen, X.; Zhou, Z.; Zuo, M.; Xiao, Y.; Zhao, N.; Shi, C.; Guo, X. Effect of continuous pressures on electrochemical performance of Si anodes. Mater. Today Energy 2021, 20, 100632.

    CAS  Google Scholar 

  2. Zhang, X. J.; Chen, L. L.; Yang, Z.; Qiu, X. Y.; Zheng, Z. M. Investigation of the structural effect of the carbon coated separator towards to the properties of Li-S batteries. Mater. Lett. 2021, 290, 129512.

    CAS  Google Scholar 

  3. Yang, Y.; Zhu, H.; Xiao, J. F.; Geng, H. B.; Zhang, Y. F.; Zhao, J. B.; Li, G.; Wang, X. L.; Li, C. C.; Liu, Q. Achieving ultrahigh-rate and high-safety Li+ storage based on interconnected tunnel structure in micro-size niobium tungsten oxides. Adv. Mater. 2020, 32, 1905295.

    CAS  Google Scholar 

  4. Shi, C.; Zhu, J. W.; Shen, X.; Chen, F. X.; Ning, F. G.; Zhang, H. D.; Long, Y. Z.; Ning, X.; Zhao, J. B. Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv. 2018, 8, 4072–4077.

    CAS  Google Scholar 

  5. Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 10, 4257–4300.

    Google Scholar 

  6. Manthiram, A.; Yu, X. W; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

    CAS  Google Scholar 

  7. Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

    CAS  Google Scholar 

  8. Zhou, Q.; Dong, S. M.; Lv, Z. L.; Xu, G. J.; Huang, L.; Wang, Q. L.; Cui, Z. L.; Cui, G. L. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 2020, 10, 1903441.

    CAS  Google Scholar 

  9. Ren, X. C.; Zhang, X. Q.; Xu, R.; Huang, J. Q.; Zhang, Q. Analyzing energy materials by cryogenic electron microscopy. Adv. Mater. 2020, 32, 1908293.

    CAS  Google Scholar 

  10. Zhang, Q. Q.; Liu, K.; Ding, F.; Liu, X. J. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res. 2017, 10, 4139–4174.

    Google Scholar 

  11. Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

    CAS  Google Scholar 

  12. Wu, B. B.; Wang, S. Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W. Q.; Yang, J. H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810.

    CAS  Google Scholar 

  13. Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc 2005, 152, A396–A404.

    CAS  Google Scholar 

  14. Brissot, C.; Rosso, M. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 1999, 81–82, 925–929.

    Google Scholar 

  15. Hu, Y. R.; Zhong, Y. R.; Qi, L. M.; Wang, H. L. Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Res. 2020, 13, 3230–3234.

    CAS  Google Scholar 

  16. Han, F. D.; Westover, A. S.; Yue, J.; Fan, X. L.; Wang, F.; Chi, M. F.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187–196.

    CAS  Google Scholar 

  17. Cui, J.; Zhou, Z. H.; Jia, M. Y.; Chen, X.; Shi, C.; Zhao, N.; Guo, X. X. Solid polymer electrolytes with flexible framework of SiO2 nanofibers for highly safe solid lithium batteries. Polymers 2020, 12, 1324.

    CAS  Google Scholar 

  18. Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

    CAS  Google Scholar 

  19. Li, Y.; Zhang, W.; Dou, Q. Q.; Wong, K. W.; Ng, K. M. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 2019, 7, 3391–3398.

    CAS  Google Scholar 

  20. Xie, H.; Yang, C. P.; Fu, K. K.; Yao, Y. G.; Jiang, F.; Hitz, E.; Liu, B. Y.; Wang, S.; Hu, L. B. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Adv. Energy Mater. 2018, 8, 1703474.

    Google Scholar 

  21. Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horizons 2016, 3, 487–516.

    CAS  Google Scholar 

  22. Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 2019, 9, 1804004.

    Google Scholar 

  23. Li, Y. T.; Xu, B. Y.; Xu, H. X.; Duan, H. N.; Lü, X. J.; Xin, S.; Zhou, W. D.; Xue, L. G.; Fu, G. T.; Manthiram, A. et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem., Int. Ed. 2017, 56, 753–756.

    CAS  Google Scholar 

  24. Choi, H.; Kim, H. W.; Ki, J. K.; Lim, Y. J.; Kim, Y.; Ahn, J. H. Nanocomposite quasi-solid-state electrolyte for high-safety lithium batteries. Nano Res. 2017, 10, 3092–3102.

    CAS  Google Scholar 

  25. Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018, 15, 46–52.

    Google Scholar 

  26. Li, R. G.; Guo, S. T.; Yu, L.; Wang, L. B.; Wu, D. B.; Li, Y. Q.; Hu, X. L. Morphosynthesis of 3D macroporous garnet frameworks and perfusion of polymer-stabilized lithium salts for flexible solid-state hybrid electrolytes. Adv. Mater. Interfaces 2019, 6, 1900200.

    Google Scholar 

  27. Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties. J. Mater. Chem. A 2019, 7, 16425–16436.

    CAS  Google Scholar 

  28. Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem., Int. Ed. 2018, 57, 2096–2100.

    CAS  Google Scholar 

  29. Palmer, M. J.; Kalnaus, S.; Dixit, M. B.; Westover, A. S.; Hatzell, K. B.; Dudney, N. J.; Chen, X. C. A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Mater. 2020, 26, 242–249.

    Google Scholar 

  30. Du, F. M.; Zhao, N.; Fang, R.; Cui, Z. H.; Li, Y. Q.; Guo, X. X. Influence of electronic conducting additives on cycle performance of garnet-based solid lithium batteries. J. Inorg. Mater. 2018, 33, 462–468.

    Google Scholar 

  31. Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

    CAS  Google Scholar 

  32. Le, H. T. T.; Ngo, D. T.; Kalubarme, R. S.; Cao, G. Z.; Park, C. N.; Park, C. J. Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries. ACS Appl. Mater. Interfaces 2016, 8, 20710–20719.

    CAS  Google Scholar 

  33. Shi, C.; Dai, J. H.; Huang, S. H.; Li, C.; Shen, X.; Zhang, P.; Wu, D. Z.; Sun, D. H.; Zhao, J. B. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries. J. Membrane Sci. 2016, 518, 168–177.

    CAS  Google Scholar 

  34. Leng, J.; Wang, Z. X.; Li, X. H.; Guo, H. J.; Yan, G. C.; Hu, Q. Y.; Peng, W. J.; Wang, J. X. A novel dried plum-like yolk-shell architecture of tin oxide nanodots embedded into a carbon matrix: Ultra-fast assembly and superior lithium storage properties. J. Mater. Chem. A 2019, 7, 5803–5810.

    CAS  Google Scholar 

  35. Li, Q.; Zhu, G. Z.; Zhao, Y. H.; Pei, K.; Che, R. C. NixMnyCozO nanowire/CNT composite microspheres with 3D interconnected conductive network structure via spray-drying method: A high-capacity and long-cycle-life anode material for lithium-ion batteries. Small 2019, 15, 1900069.

    Google Scholar 

  36. He, Z. J.; Chen, L.; Zhang, B. C.; Liu, Y. C.; Fan, L. Z. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J. Power Sources 2018, 392, 232–238.

    CAS  Google Scholar 

  37. Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791.

    CAS  Google Scholar 

  38. Du, F. M.; Zhao, N.; Li, Y. Q.; Chen, C.; Liu, Z. W.; Guo, X. X. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. J. Power Sources 2015, 300, 24–28.

    CAS  Google Scholar 

  39. Li, Y. Q.; Wang, Z.; Li, C. L.; Cao, Y.; Guo, X. X. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J. Power Sources 2014, 248, 642–646.

    CAS  Google Scholar 

  40. Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.

    Google Scholar 

  41. Thangadurai, V.; Weppner, W. Li6ALa2Ta2O12 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 2005, 15, 107–112.

    CAS  Google Scholar 

  42. Kim, Y.; Yoo, A.; Schmidt, R.; Sharafi, A.; Lee, H.; Wolfenstine, J.; Sakamoto, J. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metallic lithium. Front. Energy Res. 2016, 4, 20.

    Google Scholar 

  43. Burnett, T.; Yakimova, R.; Kazakova, O. Mapping of local electrical properties in epitaxial graphene using electrostatic force microscopy. Nano Lett. 2011, 11, 2324–2328.

    CAS  Google Scholar 

  44. Panchal, V.; Pearce, R.; Yakimova, R.; Tzalenchuk, A.; Kazakova, O. Standardization of surface potential measurements of graphene domains. Sci. Rep. 2013, 3, 2597.

    Google Scholar 

  45. Liu, C.; Li, X.; Revilla, R. I.; Sun, T.; Zhao, J. B.; Zhang, D. W.; Yang, S. F.; Liu, Z. Y.; Cheng, X. Q.; Terryn, H. et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels. Corrosion Sci. 2021, 179, 109150.

    CAS  Google Scholar 

  46. Zhang, X.; Wang, S.; Xue, C. J.; Xin, C. Z.; Lin, Y.; Shen, Y. H.; Li, L. L.; Nan, C. W. Response to comment on “self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes”. Adv. Mater. 2020, 32, 2000026.

    CAS  Google Scholar 

  47. Yamada, H.; Bhattacharyya, A. J.; Maier, J. Extremely high silver ionic conductivity in composites of silver halide (AgBr, AgI) and mesoporous alumina. Adv. Funct. Mater. 2006, 16, 525–530.

    CAS  Google Scholar 

  48. Li, M.; Guo, L. Q.; Qiao, L. J.; Bai, Y. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM. Corros. Sci. 2012, 60, 76–81.

    CAS  Google Scholar 

  49. Wei, L.; Liu, Y.; Li, Q.; Cheng, Y. F. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corros. Sci. 2019, 146, 44–57.

    CAS  Google Scholar 

  50. Jie, J.; Liu, Y. L.; Cong, L. N.; Zhang, B. H.; Lu, W.; Zhang, X. M.; Liu, J.; Xie, H. M.; Sun, L. Q. High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. J. Energy Chem. 2020, 49, 80–88.

    Google Scholar 

  51. Tan, S. J.; Zeng, X. X.; Ma, Q.; Wu, X. W.; Guo, Y. G. Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 2018, 7, 113–138.

    Google Scholar 

  52. Zhu, Y. H.; Cao, J.; Chen, H.; Yu, Q. P.; Li, B. H. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839.

    CAS  Google Scholar 

  53. Zheng, J.; Hu, Y. Y. New Insights into the compositional dependence of li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21805147).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan Shi or Jinbao Zhao.

Electronic Supplementary Material

12274_2021_3683_MOESM1_ESM.pdf

A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Sun, T., Cui, J. et al. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 16, 5080–5086 (2023). https://doi.org/10.1007/s12274-021-3683-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3683-6

Keywords

Navigation