Skip to main content

Advertisement

Log in

High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Poly(vinylidenefluoride-co-hexafluoropropylene) (P(VDF-HFP))/Li1.3Al0.3Ti1.7(PO4)3 (LATP)/P(VDF-HFP) sandwiched hybrid solid electrolytes were precisely tailored and successfully fabricated to assemble into all-solid-state lithium-ion batteries, which were systematically evaluated on microstructure, morphology, thermal stability and electrochemical performance. The sandwiched hybrid solid electrolytes can achieve intimate contact with cathode and anode electrodes to present an excellent interfacial stability. Furthermore, the sandwiched hybrid solid electrolytes possess flexible surface, wide electrochemical working window of 4.7 V, high ionic conductivity of 0.763 mS·cm−1 and high thermal stability of 460 °C, which may contribute to realizing the practical application in all-solid-state lithium-ion batteries. The assembled cells with the hybrid solid electrolytes can quickly stabilize at a specific discharge capacity of 145.4 mAh·g−1 at 0.1C after only 5 cycles and present admirable rate performance. In addition, morphology characterizations of the sandwiched hybrid solid electrolytes after long-term cycles show a relatively integrated structure coating with a compact LATP layer. The investigations afford a promising strategy that the sandwiched hybrid solid electrolytes can overcome the mechanical limitations of the interface between electrodes and inorganic solid electrolytes to provide favorable properties for all-solid-state lithium-ion batteries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5(3):52.

    Article  Google Scholar 

  2. Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39(5):458.

    Article  CAS  Google Scholar 

  3. Zhao FP, Liang JW, Yu C, Sun Q, Li XN, Adair K, Wang CH, Zhao Y, Zhang SM, Li WH, Deng SX, Li RY, Huang YN, Huang H, Li Z, Zhao SQ, Lu SG, Sun XL. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv Energy Mater. 2020;10(9):1903422.

    Article  CAS  Google Scholar 

  4. Fang R, Xiao W, Miao C, Mei P, Zhang Y, Yan XM, Jiang Y. Fabrication of Si–SiO2@Fe/NC composite from industrial waste AlSiFe powders as high stability anodes for lithium ion batteries. Electrochim Acta. 2019;324:134860.

    Article  CAS  Google Scholar 

  5. Li R, Xiao W, Miao C, Fang R, Wang ZY, Zhang MQ. Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int. 2019;45(10):5.

    Google Scholar 

  6. Fan QH, Noh HJ, Wei ZX, Zhang JK, Lian X, Ma JM, Jung SM, Jeon IY, Xu JT, Beak JB. Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy. 2019;62:25.

    Google Scholar 

  7. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A Review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

    Article  Google Scholar 

  8. Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo SI. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat Commun. 2019;10(1):1081.

    Article  Google Scholar 

  9. Zheng BZ, Liu XS, Zhu JP, Zhao J, Zhong GM, Xiang YX, Wang HC, Zhao WM, Umeshbabu E, Wu QH, Huang JY, Yang Y. Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries. Nano Energy. 2020;67:104252.

    Article  CAS  Google Scholar 

  10. Zheng ZM, Wu HH, Liu HD, Zhang QB, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu ML, Wang MS. Achieving fast and durable lithium storage through amorphous FeP aanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b08575.

    Article  Google Scholar 

  11. Fang R, Miao C, Mou HY, Xiao W. Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J Alloys Compd. 2019. https://doi.org/10.1016/j.jallcom.2019.152884.

    Article  Google Scholar 

  12. Nie Y, Xiao W, Miao C, Fang R, Kou ZY, Wang D, Xu MB, Wang CJ. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in-situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochim Acta. 2020;353:136477.

    Article  CAS  Google Scholar 

  13. Wang QH, Chen D, Chen J, Lai C, Li L, Wang C. Facile synthesis and electrochemical properties of Fe3O4 hexahedra for Li-ion battery anode. Mater Lett. 2015;141:22.

    Google Scholar 

  14. Xiong SZ, Liu YY, Jankowski P, Liu Q, Nitze F, Xie K, Song JX, Matic A. Design of a multifunctional interlayer for NASCION-based solid-state Li metal batteries. Adv Funct Mater. 2020;30(22):2001444.

    Article  CAS  Google Scholar 

  15. Kato T, Yoshida R, Yamamoto K, Hirayama T, Motoyama M, West WC, Iriyama Y. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries. J Power Sources. 2016;325:90.

    Article  Google Scholar 

  16. Xu LQ, Li JY, Deng WT, Shuai HL, Li S, Xu ZF, Li JH, Hou HS, Peng HJ, Zou GQ, Ji XB. Garnet solid electrolyte for advanced all-solid-state Li batteries. Adv Energy Mater. 2020. https://doi.org/10.1002/aenm.202000648.

    Article  Google Scholar 

  17. Zhao LZ, Wu HH, Yang CH, Zhang QB, Zhong GM, Zheng ZM, Chen JM, He K, Wang BL, Zhu T, Zeng XC, Liu ML, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes. ACS Nano. 2018;12(12):611.

    Article  Google Scholar 

  18. Cha JH, Didwal PN, Kim JM, Chang DR, Park CJ. Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether. J Membr Sci. 2020;595:117538.

    Article  CAS  Google Scholar 

  19. Huang X, Lu Y, Song Z, Xiu TP, Badding ME, Wen ZY. Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: sintering, microstructure, performance and the role of MgO. J Energy Chem. 2019;39:8.

    Article  Google Scholar 

  20. Yu SC, Schmohl S, Liu ZG, Hoffmeyer M, Schön N, Hausen F, Tempel H, Kungl H, Wiemhöfer HD, Eichel RA. Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries. J Mater Chem A. 2019;7(8):94.

    Article  Google Scholar 

  21. Li QH, Xu C, Huang B, Yin X. Sr2+-doped rhombohedral LiHf2(PO4)3 solid electrolyte for all-solid-state Li-metal battery. Rare Met. 2020;39(9):1092.

    Article  CAS  Google Scholar 

  22. Li NW, Yin YX, Yang CP, Guo YG. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater. 2016;28(9):1853.

    Article  CAS  Google Scholar 

  23. Liang YZ, Lin Z, Qiu YP, Zhang XW. Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochim Acta. 2011;56(18):80.

    Article  Google Scholar 

  24. Nie Y, Xiao W, Miao C, Xu MB, Wang CJ. Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta. 2020;334:135654.

    Article  CAS  Google Scholar 

  25. Zheng ZM, Wu HH, Liu HD, Zhang QB, He X, Yu S, Petrova V, Feng J, Kostecki R, Liu P, Peng DL, Liu ML, Wang MS. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano. 2020;14(8):61.

    Article  Google Scholar 

  26. Ma FR, Zhang ZQ, Yan WC, Ma XD, Sun DY, Jin YC. Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustain Chem Eng. 2019;7(5):83.

    Article  Google Scholar 

  27. Yi TF, Qiu LY, Mei J, Qi SY, Cui P, Luo S, Cui P, Luo SH, Zhu YR, Xie Y, He YB. Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull. 2020. https://doi.org/10.1016/j.scib.2020.01.011.

    Article  Google Scholar 

  28. Wu L, Hu Y, Zhang XP, Liu JQ, Zhu X, Zhong SK. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J Power Sources. 2018;374:7.

    Article  Google Scholar 

  29. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01501-6.

    Article  Google Scholar 

  30. He ZJ, Fan LZ. Poly(ethylene carbonate)-based electrolytes with high concentration Li salt for all-solid-state lithium batteries. Rare Met. 2018;37(6):488.

    Article  CAS  Google Scholar 

  31. Liu JY, Liu T, Pu YJ, Guan MM, Tang ZY, Ding F, Xu ZB, Li Y. Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 2017;7(74):52.

    Google Scholar 

  32. Su JM, Huang X, Song Z, Xiu TP, Badding ME, Jin J, Wen ZY. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram Int. 2019;45(12):6.

    Article  Google Scholar 

  33. Yang J, Wan HL, Zhang ZH, Liu GZ, Xu XX, Hu YS, Hu YS. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.

    Article  CAS  Google Scholar 

  34. Liang JW, Li XN, Wang S, Adair KR, Li WH, Zhao Y, Wang CH, Hu YF, Zhang L, Lu SG, Li RY, Mo YF, Sun XL. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J Am Chem Soc. 2020;142(15):22.

    Article  Google Scholar 

  35. Zheng BZ, Zhu JP, Wang HC, Feng M, Umeshbabu E, Li YX, Wu QH, Yang Y. Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer. ACS Appl Mater Inter. 2018;10(30):82.

    Article  Google Scholar 

  36. Yao XY, Huang BX, Yin JY, Peng G, Huang Z, Gao C, Liu D, Xu XF. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science. Chin Phys B. 2016;25(1):018802.

    Article  Google Scholar 

  37. Yu X, Manthiram A. Enhanced interfacial stability of hybrid-electrolyte lithium–sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity. Adv Funct Mater. 2019;29(3):1805996.

    Article  Google Scholar 

  38. Kou ZY, Miao C, Wang ZY, Mei P, Zhang Y, Yan XM, Jiang Y, Xiao W. Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values. Ceram Int. 2020;46(7):36.

    Article  Google Scholar 

  39. Wang ZY, Kou ZY, Miao C, Xiao W. Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles. Ceram Int. 2019;45(11):73.

    Google Scholar 

  40. Kou ZY, Miao C, Wang ZY, Mei P, Zhang Y, Yan XM, Jiang Y, Xiao W. Enhanced ionic conductivity of novel composite polymer electrolytes with Li1.3Al0.3Ti1.7(PO4)3 NASICON-type fast ion conductor powders. Solid State Ionics. 2019;338:43.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51874046 and 51404038) and the Outstanding Youth Foundation of Hubei Province (No. 2020CFA090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, ZY., Lu, Y., Miao, C. et al. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 40, 3175–3184 (2021). https://doi.org/10.1007/s12598-020-01678-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01678-w

Keywords

Navigation