Skip to main content
Log in

Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Growing market demand from portable electronics to electric automobiles boosts the development of lithium-ion batteries (LIBs) with high energy density and rate performance. However, strong solvation effect between lithium ions (Li+) and solvent molecules in common electrolytes limits the mobility of Li+ ions in electrolytes. Consequently, anions dominate the charge conduction in electrolytes, and in most cases, the value of Li+ transference number (T+) is between 0.2 and 0.4. A low T+ will aggravate concentration polarization in the process of charging and discharging, especially at high rate, which not only increases the overpotential but also intensifies side reactions, along with uneven deposition of lithium (Li) and the growth of lithium dendrites when lithium metal is used as anode. In this review, promising strategies to improve T+ in liquid electrolytes would be summarized. The migration of Li+ ions is affected directly by the types and concentration of lithium salts, solvents, and additives in bulk electrolytes. Besides, Li+ ions will pass through the separator and solid electrolyte interphase (SEI) when transferring between anodes and cathodes. With this in mind, we will classify and summarize threads of enhancing T+ from five aspects: lithium salts, solvents, additives, separators, and SEI based on different mechanisms, including covalently bonding, desolvation effect, Lewis acid-base interaction, electrostatic interaction, pore sieving, and supramolecular interaction. We believe this review will present a systematic understanding and summary on T+ and point out some feasible threads to enhance battery performance by enhancing T+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    Article  CAS  Google Scholar 

  2. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  5. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    Article  CAS  Google Scholar 

  6. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    Article  CAS  Google Scholar 

  7. Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

    Article  Google Scholar 

  8. Tomaszewska, A.; Chu, Z. Y.; Feng, X. N.; O’Kane, S.; Liu, X. H.; Chen, J. Y.; Ji, C. Z.; Endler, E.; Li, R. H.; Liu, L. S. et al. Lithiumion battery fast charging: A review. eTransportation 2019, 1, 100011.

    Article  Google Scholar 

  9. Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

    Article  CAS  Google Scholar 

  10. Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

    Article  CAS  Google Scholar 

  11. Jin, H. C.; Xin, S.; Chuang, C.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197.

    Article  CAS  Google Scholar 

  12. Liu, H. D.; Zhu, Z. Y.; Yan, Q. Z.; Yu, S. C.; He, X.; Chen, Y.; Zhang, R.; Ma, L.; Liu, T. C.; Li, M. et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020, 585, 63–67.

    Article  CAS  Google Scholar 

  13. Tian, T.; Lu, L. L.; Yin, Y. C.; Li, F.; Zhang, T. W.; Song, Y. H.; Tan, Y. H.; Yao, H. B. Multiscale designed niobium titanium oxide anode for fast charging lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2007419.

    Article  CAS  Google Scholar 

  14. Zhang, Y.; Liu, B. Y.; Hitz, E.; Luo, W.; Yao, Y. G.; Li, Y. J.; Dai, J. Q.; Chen, C. J.; Wang, Y. B.; Yang, C. P. et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res. 2017, 10, 1356–1365.

    Article  CAS  Google Scholar 

  15. Wang, Z. J.; Yang, K.; Song, Y. L.; Lin, H.; Li, K.; Cui, Y. L.; Yang, L. Y.; Pan, F. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 2020, 13, 2431–2437.

    Article  CAS  Google Scholar 

  16. Wang, W. J.; Zhu, X. H.; Fu, L. Touch ablation of lithium dendrites via liquid metal for high-rate and long-lived batteries. CCS Chem. 2021, 3, 686–695.

    Article  CAS  Google Scholar 

  17. Meng, Q. Q.; Zhang, H. M.; Liu, Y.; Huang, S. B.; Zhou, T. Z.; Yang, X. F.; Wang, B. Y.; Zhang, W. F.; Ming, H.; Xiang, Y. et al. A scalable bio-inspired polydopamine-Cu ion interfacial layer for high-performance lithium metal anode. Nano Res. 2019, 12, 2919–2924.

    Article  CAS  Google Scholar 

  18. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  CAS  Google Scholar 

  19. Blint, R. J. Binding of ether and carbonyl oxygens to lithium ion. J. Electrochem. Soc. 1995, 142, 696–702.

    Article  CAS  Google Scholar 

  20. Endo, E.; Ata, M.; Tanaka, K.; Sekai, K. Electron spin resonance study of the electrochemical reduction of electrolyte solutions for lithium secondary batteries. J. Electrochem. Soc. 1998, 145, 3757–3764.

    Article  CAS  Google Scholar 

  21. Wang, Y. X.; Nakamura, S.; Ue, M.; Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithiumion batteries: Reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 2001, 123, 11708–11718.

    Article  CAS  Google Scholar 

  22. Yanase, S.; Oi, T. Solvation of lithium ion in organic electrolyte solutions and its isotopie reduced partition function ratios studied by ab initio Molecular orbital method. J. Nucl. Sci. Technol. 2002, 39, 1060–1064.

    Article  CAS  Google Scholar 

  23. Fukushima, T.; Matsuda, Y.; Hashimoto, H.; Arakawa, R. Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy. Electrochem. Solid-State Lett. 2001, 4, A127.

    Article  CAS  Google Scholar 

  24. Salomon, M. Conductance of solutions of lithium bis (trifluoromethanesulfone) imide in water, propylene carbonate, acetonitrile and methyl formate at 25 °C. J. Solution Chem. 1993, 22, 715–725.

    Article  CAS  Google Scholar 

  25. Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 1994, 141, 3336–3342.

    Article  CAS  Google Scholar 

  26. Sun, X. G.; Kerr, J. B. Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis (allylmalonato) borate. Macromolecules 2006, 39, 362–372.

    Article  CAS  Google Scholar 

  27. Jana, A.; Woo, S. I.; Vikrant, K. S. N.; García, R. E. Electrochemomechanics of lithium dendrite growth. Energy Environ. Sci. 2019, 12, 3595–3607.

    Article  CAS  Google Scholar 

  28. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 1990, 42, 7355–7367.

    Article  CAS  Google Scholar 

  29. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    Article  CAS  Google Scholar 

  30. Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39, 2073–2081.

    Article  CAS  Google Scholar 

  31. Thomas, K. E.; Sloop, S. E.; Kerr, J. B.; Newman, J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 2000, 89, 132–138.

    Article  CAS  Google Scholar 

  32. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2017, 2, 2563–2575.

    Article  CAS  Google Scholar 

  33. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 2011, 56, 3926–3933.

    Article  CAS  Google Scholar 

  34. Bruce, P. G.; Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 1987, 225, 1–17.

    Article  CAS  Google Scholar 

  35. Ma, Y. P.; Doyle, M.; Fuller, T. F.; Doeff, M. M.; De Jonghe, L. C.; Newman, J. The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. J. Electrochem. Soc. 1995, 142, 1859–1868.

    Article  CAS  Google Scholar 

  36. Shah, D. B.; Nguyen, H. Q.; Grundy, L. S.; Olson, K. R.; Mecham, S. J.; DeSimone, J. M.; Balsara, N. P. Difference between approximate and rigorously measured transference numbers in fluorinated electrolytes. Phys. Chem. Chem. Phys. 2019, 21, 7857–7866.

    Article  CAS  Google Scholar 

  37. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

    Article  CAS  Google Scholar 

  38. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

    Article  CAS  Google Scholar 

  39. Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 2011, 133, 13121–13129.

    Article  CAS  Google Scholar 

  40. Alvarado, J.; Schroeder, M. A.; Zhang, M. H.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M. S.; Gobet, M.; Greenbaum, S.; Meng, Y. S. et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353.

    Article  CAS  Google Scholar 

  41. Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.

    Article  CAS  Google Scholar 

  42. McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environ. Sci. 2014, 7, 416–426.

    Article  CAS  Google Scholar 

  43. Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J. H.; Tateyama, Y.; Yamada, A. Corrosion prevention mechanism of aluminum metal in superconcentrated electrolytes. ChemElectroChem 2015, 2, 1627.

    Article  CAS  Google Scholar 

  44. Suo, L. M.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. Q. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.

    Article  Google Scholar 

  45. Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280.

    Article  CAS  Google Scholar 

  46. Borodin, O.; Suo, L. M.; Gobet, M.; Ren, X. M.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M. S. et al. Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS Nano 2017, 11, 10462–10471.

    Article  CAS  Google Scholar 

  47. Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

    Article  Google Scholar 

  48. Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

    Article  CAS  Google Scholar 

  49. Huang, F. F.; Ma, G. Q.; Wen, Z. Y.; Jin, J.; Xu, S. Q.; Zhang, J. J. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J. Mater. Chem. A 2018, 6, 1612–1620.

    Article  CAS  Google Scholar 

  50. Von Aspern, N.; Röschenthaler, G. V.; Winter, M.; Cekic-Laskovic, I. Fluorine and lithium: Ideal partners for high-performance rechargeable battery electrolytes. Angew. Chem., Int. Ed. 2019, 58, 15978–16000.

    Article  CAS  Google Scholar 

  51. Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.

    Article  CAS  Google Scholar 

  52. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum current collector in LiTFSI solutions with different solvent compositions. J. Power Sources 2003, 119-121, 784–788.

    Article  Google Scholar 

  53. Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M. Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim. Acta 2002, 47, 2787–2793.

    Article  CAS  Google Scholar 

  54. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.

    Article  CAS  Google Scholar 

  55. Popovic, J.; Höfler, D.; Melchior, J. P.; Münchinger, A.; List, B.; Maier, J. High lithium transference number electrolytes containing tetratriflylpropene’s lithium salt. J. Phys. Chem. Lett. 2018, 9, 5116–5120.

    Article  CAS  Google Scholar 

  56. Niedzicki, L.; Kasprzyk, M.; Kuziak, K.; Żukowska, G. Z.; Marcinek, M.; Wieczorek, W.; Armand, M. Liquid electrolytes based on new lithium conductive imidazole salts. J. Power Sources 2011, 196, 1386–1391.

    Article  CAS  Google Scholar 

  57. Armand, M.; Johansson, P.; Bukowska, M.; Szczeciński, P.; Niedzicki, L.; Marcinek, M.; Dranka, M.; Zachara, J.; Żukowska, G.; Marczewski, M. et al. Review—Development of Hückel type anions: From molecular modeling to industrial commercialization. A success story. J. Electrochem. Soc. 2020, 167, 070562.

    Article  Google Scholar 

  58. Niedzicki, L.; Oledzki, P.; Bitner, A.; Bukowska, M.; Szczecinski, P. Benzimidazole-derived anion for lithium-conducting electrolytes. J. Power Sources 2016, 306, 573–577.

    Article  CAS  Google Scholar 

  59. Shi, Q.; Zhou, X. Synthesis of a novel macromolecular lithium salt-hyperbranched lithium polyglycidol sulfate and properties of its nonaqueous solution. Acta Polym. Sin. 2004, 114–120.

  60. Buss, H. G.; Chan, S. Y.; Lynd, N. A.; McCloskey, B. D. Nonaqueous polyelectrolyte solutions as liquid electrolytes with high lithium ion transference number and conductivity. ACS Energy Lett. 2017, 2, 481–487.

    Article  CAS  Google Scholar 

  61. Fong, K. D.; Self, J.; Diederichsen, K. M.; Wood, B. M.; McCloskey, B. D.; Persson, K. A. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Cent. Sci. 2019, 5, 1250–1260.

    Article  CAS  Google Scholar 

  62. Tokuda, H.; Muto, S.; Hoshi, N.; Minakata, T.; Ikeda, M.; Yamamoto, F.; Watanabe, M. Synthesis, characterization, and ion-conductive behavior in an organic solvent and in a polyether of a novel lithium salt of a perfluorinated polyimide anion. Macromolecules 2002, 35, 1403–1411.

    Article  CAS  Google Scholar 

  63. Diederichsen, K. M.; Fong, K. D.; Terrell, R. C.; Persson, K. A.; McCloskey, B. D. Investigation of solvent type and salt addition in high transference number nonaqueous polyelectrolyte solutions for lithium ion batteries. Macromolecules 2018, 51, 8761–8771.

    Article  CAS  Google Scholar 

  64. Diederichsen, K. M.; McCloskey, B. D. Electrolyte additives to enable nonaqueous polyelectrolyte solutions for lithium ion batteries. Mol. Syst. Des. Eng. 2020, 5, 91–96.

    Article  CAS  Google Scholar 

  65. Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Lett. 2019, 4, 411–416.

    Article  CAS  Google Scholar 

  66. Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

    Article  CAS  Google Scholar 

  67. Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.

    Article  CAS  Google Scholar 

  68. Wong, D. H. C.; Thelen, J. L.; Fu, Y. B.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; DeSimone, J. M. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. USA 2014, 111, 3327–3331.

    Article  CAS  Google Scholar 

  69. Amanchukwu, C. V.; Yu, Z. A.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 2020, 142, 7393–7403.

    Article  CAS  Google Scholar 

  70. Rustomji, C. S.; Yang, Y. Y. C.; Kim, T. K.; Mac, J.; Kim, Y. J.; Caldwell, E.; Chung, H.; Meng, Y. S. Liquefied gas electrolytes for electrochemical energy storage devices. Science 2017, 356, eaal4263.

    Article  Google Scholar 

  71. Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.

    Article  CAS  Google Scholar 

  72. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    Article  CAS  Google Scholar 

  73. Xu, H. W.; Shi, J. L.; Hu, G. S.; He, Y.; Xia, Y. G.; Yin, S. S.; Liu, Z. P. Hybrid electrolytes incorporated with dandelion-like silane-Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. J. Power Sources 2018, 391, 113–119.

    Article  CAS  Google Scholar 

  74. Lee, H. S.; Yang, X. Q.; Xiang, C. L.; McBreen, J.; Choi, L. S. The synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J. Electrochem. Soc. 1998, 145, 2813–2818.

    Article  CAS  Google Scholar 

  75. Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J.; Callahan, J. H.; Choi, L. S. Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. J. Electrochem. Soc. 2000, 147, 9–14.

    Article  CAS  Google Scholar 

  76. Choi, N. S.; Ryu, S. W.; Park, J. K. Effect of tris (methoxy diethylene glycol) borate on ionic conductivity and electrochemical stability of ethylene carbonate-based electrolyte. Electrochim. Acta 2008, 53, 6575–6579.

    Article  CAS  Google Scholar 

  77. Qiao, B.; Leverick, G. M.; Zhao, W.; Flood, A. H.; Johnson, J. A.; Shao-Horn, Y. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 2018, 140, 10932–10936.

    Article  CAS  Google Scholar 

  78. Lagadec, M. F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25.

    Article  CAS  Google Scholar 

  79. Deimede, V.; Elmasides, C. Separators for lithium-Ion batteries: A review on the production processes and recent developments. Energy Technol. 2015, 3, 453–468.

    Article  Google Scholar 

  80. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X. W. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886.

    Article  CAS  Google Scholar 

  81. Djian, D.; Alloin, F.; Martinet, S.; Lignier, H.; Sanchez, J. Y. Lithium-ion batteries with high charge rate capacity: Influence of the porous separator. J. Power Sources 2007, 172, 416–421.

    Article  CAS  Google Scholar 

  82. Mao, X. F.; Shi, L. Y.; Zhang, H. J.; Wang, Z. Y.; Zhu, J. F.; Qiu, Z. F.; Zhao, Y.; Zhang, M. H.; Yuan, S. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. J. Power Sources 2017, 342, 816–824.

    Article  CAS  Google Scholar 

  83. Park, J. H.; Cho, J. H.; Park, W.; Ryoo, D.; Yoon, S. J.; Kim, J. H.; Jeong, Y. U.; Lee, S. Y. Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries. J. Power Sources 2010, 195, 8306–8310.

    Article  CAS  Google Scholar 

  84. Jeong, H. S.; Kim, D. W.; Jeong, Y. U.; Lee, S. Y. Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. J. Power Sources 2010, 195, 6116–6121.

    Article  CAS  Google Scholar 

  85. Wang, M. N.; Chen, X.; Wang, H.; Wu, H. B.; Jin, X. Y.; Huang, C. Improved performances of lithium-ion batteries with a separator based on inorganic fibers. J. Mater. Chem. A 2017, 5, 311–318.

    Article  CAS  Google Scholar 

  86. Wang, Z. Y.; Guo, F. L.; Chen, C.; Shi, L. Y.; Yuan, S.; Sun, L. N.; Zhu, J. F. Self-assembly of PEI/SiO2 on polyethylene separators for Li-ion batteries with enhanced rate capability. ACS Appl. Mater. Interfaces 2015, 7, 3314–3322.

    Article  CAS  Google Scholar 

  87. Chi, M. M.; Shi, L. Y.; Wang, Z. Y.; Zhu, J. F.; Mao, X. F.; Zhao, Y.; Zhang, M. H.; Sun, L. N.; Yuan, S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 2016, 28, 1–11.

    Article  CAS  Google Scholar 

  88. Zhu, Y. S.; Xiao, S. Y.; Li, M. X.; Chang, Z.; Wang, F. X.; Gao, J.; Wu, Y. P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 2015, 288, 368–375.

    Article  CAS  Google Scholar 

  89. Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J. Mater. Chem. A 2018, 6, 991–998.

    Article  CAS  Google Scholar 

  90. Wang, X.; Peng, L. Q.; Hua, H. M.; Liu, Y. Z.; Zhang, P.; Zhao, J. B. Magnesium borate fiber coating separators with high lithium-ion transference number for lithium-ion batteries. ChemElectroChem 2020, 7, 1187–1192.

    Article  CAS  Google Scholar 

  91. Shen, L.; Wu, H. B.; Liu, F.; Zhang, C.; Ma, S. X.; Le, Z. Y.; Lu, Y. F. Anchoring anions with metal-organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horiz. 2019, 4, 705–711.

    Article  CAS  Google Scholar 

  92. Zhang, C.; Shen, L.; Shen, J. Q.; Liu, F.; Chen, G.; Tao, R.; Ma, S. X.; Peng, Y. T.; Lu, Y. F. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, e1808338.

    Article  Google Scholar 

  93. Jiang, C.; Gu, Y. M.; Tang, M.; Chen, Y.; Wu, Y. C.; Ma, J.; Wang, C. L.; Hu, W. P. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS Appl. Mater. Interfaces 2020, 12, 10461–10470.

    Article  CAS  Google Scholar 

  94. Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 2017, 1, 394–406.

    Article  CAS  Google Scholar 

  95. Weng, Y. T.; Liu, H. W.; Pei, A.; Shi, F. F.; Wang, H. S.; Lin, C. Y.; Huang, S. S.; Su, L. Y.; Hsu, J. P.; Fang, C. C. et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nat. Commun. 2019, 10, 5824.

    Article  CAS  Google Scholar 

  96. Deng, K. R.; Han, D. M.; Ren, S.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. J. Mater. Chem. A 2019, 7, 13113–13119.

    Article  CAS  Google Scholar 

  97. Xu, R.; Xiao, Y.; Zhang, R.; Cheng, X. B.; Zhao, C. Z.; Zhang, X. Q.; Yan, C.; Zhang, Q.; Huang, J. Q. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 2019, 31, 1808392.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the National Natural Science Foundation of China (Nos. 22071133 and 21905040), the Tsinghua University-China Petrochemical Corporation Joint Institute for Green Chemical Engineering (No. 421120), Tsinghua-Foshan Innovation Special Fund (TFISF, No. 2020THFS0130), and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokun Zhang, Yong Xiang or Kai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zhang, X., Xiang, Y. et al. Strategies to enhance Li+ transference number in liquid electrolytes for better lithium batteries. Nano Res. 16, 8055–8071 (2023). https://doi.org/10.1007/s12274-022-4833-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4833-1

Keywords

Navigation