Skip to main content
Log in

Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium (Li) metal is one of the most promising anodes for next-generation energy storage systems. However, the Li dendrite formation and unstable solid-electrolyte interface (SEI) have hindered its further application. Lithium nitrate (LiNO3) is extensively used as an effective electrolyte additive in ether-based electrolytes to improve the stability of lithium metal. Nevertheless, it is rarely utilized in carbonate electrolytes due to its low solubility. Here, a novel gel polymer electrolyte (GPE) consisting of poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO) with LiNO3 additive is proposed to solve this issue. In this GPE, polyether-based PEO serves as a matrix for dissolving LiNO3 which can be decomposed into a fast Li-ion conductor (Li3N) in conventional carbonate electrolytes to enhance the stability and Li+ conductivity of the SEI film. As a result, dendrite formation is effectively suppressed, and a significantly improved average Coulombic efficiency (CE) of 97.2% in Li-Cu cell is achieved. By using this novel GPE coupled with Li anode and LiNi0.5Mn0.3Co0.2O2 (NMC532), excellent capacity retention of 94.1% and high average CE of over 99.2% are obtained after 200 cycles at 0.5 C. This work presents fresh insight into practical modification strategies on high-voltage Li metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev.2018, 1, 35–53.

    CAS  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359–367.

    CAS  Google Scholar 

  3. Du, H. R.; Huang, K. F.; Li, M.; Xia, Y. Y.; Sun, Y. X.; Yu, M. K.; Geng, B. Y. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res.2018, 11, 1490–1499.

    CAS  Google Scholar 

  4. Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol.2019, 14, 50–56.

    CAS  Google Scholar 

  5. Xiang, J. W.; Yang, L. Y.; Yuan, L. X.; Yuan, K.; Zhang, Y.; Huang, Y. Y.; Lin, J.; Pan, F.; Huang, Y. H. Alkali-metal anodes: From lab to market. Joule2019, 3, 2334–2363.

    CAS  Google Scholar 

  6. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed.2013, 52, 13186–13200.

    CAS  Google Scholar 

  7. Liu, H.; Liu, M. Q.; Yang, L. Y.; Song, Y. L.; Wang, X. B.; Yang, K.; Pan, F. A bi-functional redox mediator promoting the ORR and OER in non-aqueous Li-O2 batteries. Chem. Commun.2019, 55, 6567–6570.

    CAS  Google Scholar 

  8. Jiang, Z. P.; Jin, L.; Han, Z. L.; Hu, W.; Zeng, Z. Q.; Sun, Y. L.; Xie, J. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem., Int. Ed.2019, 58, 11374–11378.

    CAS  Google Scholar 

  9. Wang, M. Q.; Peng, Z.; Luo, W. W.; Ren, F. H.; Li, Z. D.; Zhang, Q.; He, H. Y.; Ouyang, C. Y.; Wang, D. Y. Tailoring lithium deposition via an SEI-functionalized membrane derived from LiF decorated layered carbon structure. Adv. Energy Mater.2019, 9, 1802912.

    Google Scholar 

  10. Huang, Z. J.; Zhou, G. M.; Lv, W.; Deng, Y. Q.; Zhang, Y. B.; Zhang, C.; Kang, F. Y.; Yang, Q. H. Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy2019, 61, 47–53.

    CAS  Google Scholar 

  11. Kim, J. Y.; Liu, G. C.; Tran, M. X.; Ardhi, R. E. A.; Kim, H.; Lee, J. K. Synthesis and characterization of a hierarchically structured three-dimensional conducting scaffold for highly stable Li metal anodes. J. Mater. Chem. A2019, 7, 12882–12892.

    CAS  Google Scholar 

  12. Song, H. Y.; Chen, X. L.; Zheng, G. L.; Yu, X. J.; Jiang, S. F.; Cui, Z. M.; Du, L.; Liao, S. J. Dendrite-free composite Li anode assisted by ag nanoparticles in a wood-derived carbon frame. ACS Appl. Mater. Interfaces2019, 11, 18361–18367.

    CAS  Google Scholar 

  13. Zhao, F.; Zhou, X. F.; Deng, W.; Liu, Z. P. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy2019, 62, 55–63.

    CAS  Google Scholar 

  14. Qian, J.; Li, Y.; Zhang, M. L.; Luo, R.; Wang, F. J.; Ye, Y. S.; Xing, Y.; Li, W. L.; Qu, W. J.; Wang, L. L. et al. Protecting lithium/sodium metal anode with metal-organic framework based compact and robust shield. Nano Energy2019, 60, 866–874.

    CAS  Google Scholar 

  15. Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl. Mater. Interfaces2019, 11, 17435–17443.

    CAS  Google Scholar 

  16. Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy2017, 2, 17012.

    CAS  Google Scholar 

  17. Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, Q.; Cui, G. L.; Chen, L. Q. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater.2018, 30, 4039–4047.

    CAS  Google Scholar 

  18. Yu, L.; Chen, S. R.; Lee, H.; Zhang, L. C.; Engelhard, M. H.; Li, Q. Y.; Jiao, S. H.; Liu, J.; Xu, W.; Zhang, J. G. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett.2018, 3, 2059–2067.

    CAS  Google Scholar 

  19. Song, Y. L.; Yang, L. Y.; Zhao, W. G.; Wang, Z. J.; Zhao, Y.; Wang, Z. Q.; Zhao, Q. H.; Liu, H.; Pan, F. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater.2019, 9, 1900671.

    Google Scholar 

  20. Wang, K.; Yang, L. Y.; Wang, Z. Q.; Zhao, Y.; Wang, Z. J.; Han, L.; Song, Y. L.; Pan, F. Enhanced lithium dendrite suppressing capability enabled by a solid-like electrolyte with different-sized nanoparticles. Chem. Commun.2018, 54, 13060–13063.

    CAS  Google Scholar 

  21. Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett.2018, 18, 3829–3838.

    CAS  Google Scholar 

  22. Zhang, Y. B.; Chen, R. J.; Wang, S.; Liu, T.; Xu, B. Q.; Zhang, X.; Wang, X. Z.; Shen, Y.; Lin, Y. H.; Li, M. et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries. Energy Storage Mater.2020, 25, 145–153.

    CAS  Google Scholar 

  23. Liang, X.; Wen, Z. Y.; Liu, Y.; Wu, M. F.; Jin, J.; Zhang, H.; Wu, X. W. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power Sources2011, 196, 9839–9843.

    CAS  Google Scholar 

  24. Zhang, S. S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim. Acta2012, 70, 344–348.

    CAS  Google Scholar 

  25. Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L. et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries. Adv. Energy Mater.2018, 5, 1701398.

    Google Scholar 

  26. Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem., Int. Ed.2018, 57, 5301–5305.

    CAS  Google Scholar 

  27. Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater.2018, 10, 139–159.

    Google Scholar 

  28. Dong, T. T.; Zhang, J. J.; Xu, G. J.; Chai, J. C.; Du, H. P.; Wang, L. L.; Wen, H. J.; Zang, X.; Du, A. B.; Jia, Q. M. et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci.2018, 11, 1197–1203.

    CAS  Google Scholar 

  29. Wang, C.; Wang, T.; Wang, L. L.; Hu, Z. L.; Cui, Z. L.; Li, J. D.; Dong, S. M.; Zhou, X. H.; Cui, G. L. Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci.2019, 6, 1901036.

    CAS  Google Scholar 

  30. Yang, L. Y.; Wang, Z. J.; Feng, Y. C.; Tan, R.; Zuo, Y. X.; Gao, R. T.; Zhao, Y.; Han, L.; Wang, Z. Q.; Pan, F. Flexible composite solid electrolyte facilitating highly stable “soft contacting” Li-electrolyte interface for solid state lithium-ion batteries. Adv. Energy Mater.2017, 7, 1701437.

    Google Scholar 

  31. Yue, L. P.; Ma, J.; Zhang, J. J.; Zhao, J. W.; Dong, S. M.; Liu, Z. H.; Cui, G. L.; Chen, L. Q. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater.2016, 5, 139–164.

    Google Scholar 

  32. Chai, J. C.; Liu, Z. H.; Zhang, J. J.; Sun, J. R.; Tian, Z. Y.; Ji, Y. Y.; Tang, K.; Zhou, X. H.; Cui, G. L. A superior polymer electrolyte with rigid cyclic carbonate backbone for rechargeable lithium ion batteries. ACS Appl. Mater. Interfaces2017, 9, 17897–17905.

    CAS  Google Scholar 

  33. Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem.2019, 37, 126–142.

    Google Scholar 

  34. Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun.2018, 9, 3656.

    Google Scholar 

  35. Shi, Q. W.; Zhong, Y. R.; Wu, M.; Wang, H. Z.; Wang, H. L. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proc. Natl. Acad. Sci. USA2018, 115, 5676–5680.

    CAS  Google Scholar 

  36. Yan, C.; Yao, Y. X.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem., Int. Ed.2018, 57, 14055–14059.

    CAS  Google Scholar 

  37. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater.2018, 8, 1702097.

    Google Scholar 

  38. Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater.2019, 31, 1902029.

    CAS  Google Scholar 

  39. Rietman, E. A.; Kaplan, M. L.; Cava, R. J. Lithium ion-poly (ethylene oxide) complexes. I. Effect of anion on conductivity. Solid State Ionics1985, 17, 67–73.

    CAS  Google Scholar 

  40. Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy2018, 54, 17–25.

    CAS  Google Scholar 

  41. Alpen, U. V.; Rabenau, A.; Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett.1977, 30, 621–623.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2016YFB0700600), Soft Science Research Project of Guangdong Province (No. 2017B030301013), and Shenzhen Science and Technology Research Grant (No. ZDSYS201707281026184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyi Yang or Feng Pan.

Electronic Supplementary Material

12274_2020_2871_MOESM1_ESM.pdf

Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, K., Song, Y. et al. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Res. 13, 2431–2437 (2020). https://doi.org/10.1007/s12274-020-2871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2871-0

Keywords

Navigation