Skip to main content
Log in

Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

All solid-state lithium batteries (ASSLBs) overcome the safety concerns associated with traditional lithium-ion batteries and ensure the safe utilization of high-energy-density electrodes, particularly Li metal anodes with ultrahigh specific capacities. However, the practical implementation of ASSLBs is limited by the instability of the interface between the anode and solid-state electrolyte (SSE). To mitigate this, considerable research has been dedicated to achieving enhanced stability at the anode/SSE interface. Among the current strategies for enhancing interface performance, the concept of Li-alloy materials is extensively used and well functionalized in various scenarios, including Li alloys as anodes, Li-alloy interlayers and Li alloys in the anode. Despite the notable achievements of Li-alloy materials in ASSLBs, the functionality, practicality and working mechanism of Li-alloys have not been fully elucidated. This review commences by providing an exhaustive and in-depth examination of the fundamental kinetics, thermodynamics, and mechanics, highlighting Li-alloy materials. Subsequently, through a systematic interconnection of material properties and their practical applications, we undertake a comprehensive analysis of the operative principles governing Li alloys. This analytical approach allows a thorough evaluation of the viability and utility of Li alloys within the context of ASSLBs. Finally, this review concludes by succinctly summarizing the future prospects and inherent potential of Li-alloy materials for further advancing the field of ASSLBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright © 2022, American Chemical Society. d Schematic illustration of the interfacial Li transport process. e Evolutions of the diffusion coefficient and charge transfer impedance as a function of the Li content in LixIn and the GITT profile. Reprinted with permission from Ref. [71]. Copyright © 2021, AAAS

Fig. 6

Copyright © 2021, AAAS. c Voltage and current profiles of the Li-Zn|LPSC|Li-Zn cell at step-increased current densities. Reprinted with permission from Ref. [41]. Copyright © 2022, The Royal Society of Chemistry. d Typical voltage profile of a symmetric Li|LPSC|Li cell. Reprinted with permission from Ref. [79]. Copyright © 2022, Nature Publishing Group

Fig. 7

Copyright © 2012, Nature Publishing Group. b Comparison of Si and Ge during lithiation. Reprinted with permission from Ref. [95]. Copyright © 2013, American Chemical Society. c Gibbs free energy diagram of Li-Al alloys. Reprinted with permission from Ref. [89]. Copyright © 2020, Nature Publishing Group

Fig. 8

Copyright © 2021, Elsevier

Fig. 9
Fig. 10

Copyright © 2022, Wiley-VCH. c AIMD simulation on the In/Li6PS5Cl interface. Reprinted with permission from Ref. [78]. Copyright © 2021, Nature Publishing Group

Fig. 11

Copyright © 2021, Nature Publishing Group

Fig. 12

Copyright © 2020, Nature Publishing Group

Fig. 13

Copyright © 2012, American Chemical Society. b Li trapped in the Si anode during delithiation. Reprinted with permission from Ref. [176]. Copyright © 2019, AAAS. Calculated electrochemical reaction energy between Si and c 75Li2S-25P2S5 and d 70(0.75Li2S-0.25P2S5)-60LiI electrolytes, confirming the side reactions between the Li-Si anode and the sulfide electrolytes. Reprinted with permission from Ref. [178]. Copyright © 2023, The Royal Society of Chemistry

Fig. 14

Copyright © 2022, Wiley-VCH. b Structure and c advantages of bipolar-stacked all-solid-state batteries. Reprinted with permission from Ref. [191]. Copyright © 2022, Wiley-VCH

Fig. 15

Copyright © 2007, Wiley-VCH. b Schematic illustration of the contact between col-Si and SSEs and the 1D breathing behavior of the col-Si anode during lithiation. Reprinted with permission from Ref. [182]. Copyright © 2020, Wiley-VCH. c The 99.9% μSi anode and its lithiation process in an all-solid-state full battery. Reprinted with permission from Ref. [114]. Copyright © 2021, AAAS. d Mechanism of the hard carbon-stabilized LiSi anode. Reprinted with permission from Ref. [116]. Copyright © 2023, Nature Publishing Group

Fig. 16

Copyright © 2020, Wiley-VCH. b Gradient LiF-LiAl-Li anode and its merits. Reprinted with permission from Ref. [213]. Copyright © 2022, The Royal Society of Chemistry. c Evolution of the Li-Hg alloy interlayer during cycling. Reprinted with permission from Ref. [215]. Copyright © 2020, Wiley-VCH

Fig. 17

Copyright © 2021, American Chemical Society. b Cross-sectional SEM images of the LPSCl/Ag-Li interfaces in the full cell after the first cycle. Reprinted with permission from Ref. [56]. Copyright © 2021, Wiley-VCH. c Distribution of the Li+ flux simulated by the finite element method. d Schematic diagram of the working mechanism of the Li-Sn interface derived from in situ reactions between Li and the gc-Li3.2P0.8Sn0.2S4 electrolyte. Reprinted with permission from Ref. [225]. Copyright © 2021, Wiley-VCH

Fig. 18

Copyright © 2020, Wiley-VCH. b Li stripping/plating behavior in the cell with the garnet-type SSE and the Li-Mg alloy anode. Reprinted with permission from Ref. [112]. Copyright © 2018, Wiley-VCH. c Effective Li diffusion coefficient of Li and Li-Mg alloys. The orange, gray and blue lines correspond to Li, Li0.95Mg0.5 and Li0.9Mg0.1, respectively. d Simulated Li utilization of the Li0.9Mg0.1 electrode as a function of current density at different temperatures. Reprinted with permission from Ref. [55]. Copyright © 2019, Wiley-VCH

Fig. 19

Copyright © 2017, Wiley-VCH. b Preparation process of the LiSnC electrode. Comparison of the surface morphology of the c LiSnC electrode and d bare Li electrode after Li stripping. Reprinted with permission from Ref. [250]. Copyright © 2023, Elsevier

Fig. 20

Similar content being viewed by others

References

  1. Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  3. Dunn, B., Kamath, H., Tarascon, J.M.: Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  CAS  PubMed  Google Scholar 

  4. Nitta, N., Wu, F.X., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  5. Zhang, J.G., Xu, W., Xiao, J., et al.: Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020). https://doi.org/10.1021/acs.chemrev.0c00275

    Article  CAS  PubMed  Google Scholar 

  6. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q., Lu, T.T., Xiao, Y.B., et al.: Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem. Energy Rev. 6, 22 (2023). https://doi.org/10.1007/s41918-023-00185-7

    Article  CAS  Google Scholar 

  8. Li, Y.L., Feng, X.N., Ren, D.S., et al.: Thermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces 11, 46839–46850 (2019). https://doi.org/10.1021/acsami.9b16589

    Article  CAS  PubMed  Google Scholar 

  9. Hou, J.X., Lu, L.G., Wang, L., et al.: Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nat. Commun. 11, 5100 (2020). https://doi.org/10.1038/s41467-020-18868-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiao, S.H., Ren, X.D., Cao, R.G., et al.: Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018). https://doi.org/10.1038/s41560-018-0199-8

    Article  CAS  Google Scholar 

  11. Liu, H., Sun, X., Cheng, X.B., et al.: Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 12, 2202518 (2022). https://doi.org/10.1002/aenm.202202518

    Article  CAS  Google Scholar 

  12. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  13. Yang, C.P., Fu, K., Zhang, Y., et al.: Protected lithium-metal anodes in batteries: from liquid to solid. Adv. Mater. 29, 1701169 (2017). https://doi.org/10.1002/adma.201701169

    Article  CAS  Google Scholar 

  14. Yang, S.J., Hu, J.K., Jiang, F.N., et al.: Oxygen-induced thermal runaway mechanisms of Ah-level solid-state lithium metal pouch cells. ETransportation 18, 100279 (2023). https://doi.org/10.1016/j.etran.2023.100279

    Article  Google Scholar 

  15. Zhao, Q., Stalin, S., Zhao, C.Z., et al.: Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5

    Article  CAS  Google Scholar 

  16. Wu, J.H., Shen, L., Zhang, Z.H., et al.: All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4, 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4

    Article  CAS  Google Scholar 

  17. Su, H., Jiang, Z., Liu, Y., et al.: Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater 2, 205 (2022). https://doi.org/10.20517/energymater.2022.01

    Article  CAS  Google Scholar 

  18. Vishnugopi, B.S., Kazyak, E., Lewis, J.A., et al.: Challenges and opportunities for fast charging of solid-state lithium metal batteries. ACS Energy Lett. 6, 3734–3749 (2021). https://doi.org/10.1021/acsenergylett.1c01352

    Article  CAS  Google Scholar 

  19. Xiao, Y.H., Wang, Y., Bo, S.H., et al.: Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2019). https://doi.org/10.1038/s41578-019-0157-5

    Article  CAS  Google Scholar 

  20. Wu, J.H., Liu, S.F., Han, F.D., et al.: Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021). https://doi.org/10.1002/adma.202000751

    Article  CAS  Google Scholar 

  21. Su, H., Liu, Y., Zhong, Y., et al.: Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy 96, 107104 (2022). https://doi.org/10.1016/j.nanoen.2022.107104

    Article  CAS  Google Scholar 

  22. Han, F.D., Westover, A.S., Yue, J., et al.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019). https://doi.org/10.1038/s41560-018-0312-z

    Article  CAS  Google Scholar 

  23. Porz, L., Swamy, T., Sheldon, B.W., et al.: Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017). https://doi.org/10.1002/aenm.201701003

    Article  CAS  Google Scholar 

  24. Liu, H., Cheng, X.B., Huang, J.Q., et al.: Controlling dendrite growth in solid-state electrolytes. ACS Energy Lett. 5, 833–843 (2020). https://doi.org/10.1021/acsenergylett.9b02660

    Article  CAS  Google Scholar 

  25. Liu, X.M., Garcia-Mendez, R., Lupini, A.R., et al.: Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021). https://doi.org/10.1038/s41563-021-01019-x

    Article  CAS  PubMed  Google Scholar 

  26. Wang, C.H., Deng, T., Fan, X.L., et al.: Identifying soft breakdown in all-solid-state lithium battery. Joule 6, 1770–1781 (2022). https://doi.org/10.1016/j.joule.2022.05.020

    Article  CAS  Google Scholar 

  27. Sun, M.H., Liu, T.F., Yuan, Y.F., et al.: Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett. 6, 451–458 (2021). https://doi.org/10.1021/acsenergylett.0c02314

    Article  CAS  Google Scholar 

  28. Kasemchainan, J., Zekoll, S., Spencer Jolly, D., et al.: Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019). https://doi.org/10.1038/s41563-019-0438-9

    Article  CAS  PubMed  Google Scholar 

  29. Li, J.R., Su, H., Li, M., et al.: A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chem. Eng. J. 431, 134019 (2022). https://doi.org/10.1016/j.cej.2021.134019

    Article  CAS  Google Scholar 

  30. Umeshbabu, E., Zheng, B.Z., Zhu, J.P., et al.: Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability. ACS Appl. Mater. Interfaces 11, 18436–18447 (2019). https://doi.org/10.1021/acsami.9b03726

    Article  CAS  PubMed  Google Scholar 

  31. Xu, R., Liu, F., Ye, Y.S., et al.: A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Adv. Mater. 33, 2104009 (2021). https://doi.org/10.1002/adma.202104009

    Article  CAS  Google Scholar 

  32. Zhao, F.P., Sun, Q., Yu, C., et al.: Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Lett. 5, 1035–1043 (2020). https://doi.org/10.1021/acsenergylett.0c00207

    Article  CAS  Google Scholar 

  33. Wang, C.H., Zhao, Y., Sun, Q., et al.: Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition. Nano Energy 53, 168–174 (2018). https://doi.org/10.1016/j.nanoen.2018.08.030

    Article  CAS  Google Scholar 

  34. Wan, H.L., Liu, S.F., Deng, T., et al.: Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 6, 862–868 (2021). https://doi.org/10.1021/acsenergylett.0c02617

    Article  CAS  Google Scholar 

  35. Ji, X., Hou, S., Wang, P.F., et al.: Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 32, 2002741 (2020). https://doi.org/10.1002/adma.202002741

    Article  CAS  Google Scholar 

  36. Liu, Y., Su, H., Li, M., et al.: In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. J. Mater. Chem. A 9, 13531–13539 (2021). https://doi.org/10.1039/d1ta03343c

    Article  CAS  Google Scholar 

  37. Bonnick, P., Muldoon, J.: The quest for the holy grail of solid-state lithium batteries. Energy Environ. Sci. 15, 1840–1860 (2022). https://doi.org/10.1039/d2ee00842d

    Article  CAS  Google Scholar 

  38. Du, M.J., Liao, K.M., Lu, Q., et al.: Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy Environ. Sci. 12, 1780–1804 (2019). https://doi.org/10.1039/c9ee00515c

    Article  CAS  Google Scholar 

  39. Chen, Y.M., Wang, Z.Q., Li, X.Y., et al.: Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251–255 (2020). https://doi.org/10.1038/s41586-020-1972-y

    Article  CAS  PubMed  Google Scholar 

  40. Rioja, R.J., Liu, J.: The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 43, 3325–3337 (2012). https://doi.org/10.1007/s11661-012-1155-z

    Article  CAS  Google Scholar 

  41. Huang, Y.L., Shao, B.W., Han, F.D.: Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. J. Mater. Chem. A 10, 12350–12358 (2022). https://doi.org/10.1039/d2ta02339c

    Article  CAS  Google Scholar 

  42. Shi, Z., Liu, M.L., Naik, D., et al.: Electrochemical properties of Li-Mg alloy electrodes for lithium batteries. J. Power Sources 92, 70–80 (2001). https://doi.org/10.1016/s0378-7753(00)00521-8

    Article  CAS  Google Scholar 

  43. Pelton, A.D.: The Cu-Li (copper-lithium) system. Bull. Alloy Phase Diagr. 7, 142–144 (1986). https://doi.org/10.1007/BF02881552

    Article  CAS  Google Scholar 

  44. Pelton, A.D.: The Ag-Li (silver-lithium) system. Bull. Alloy Phase Diagr. 7, 223–228 (1986). https://doi.org/10.1007/BF02868993

    Article  Google Scholar 

  45. Nayeb-Hashemi, A.A., Clark, J.B., Pelton, A.D.: The Li-Mg (lithium-magnesium) system. Bull. Alloy Phase Diagr. 5, 365–374 (1984). https://doi.org/10.1007/BF02872951

    Article  CAS  Google Scholar 

  46. Songster, J., Pelton, A.D.: The In-Li (indium-lithium) system. J. Phase Equilib. 12, 37–41 (1991). https://doi.org/10.1007/BF02663671

    Article  Google Scholar 

  47. Sangster, J., Bale, C.W.: The Li-Sn (lithium-tin) system. J. Phase Equilib. 19, 70–75 (1998). https://doi.org/10.1361/105497198770342788

    Article  CAS  Google Scholar 

  48. McAlister, A.J.: The Al-Li (aluminum-lithium) system. Bull. Alloy Phase Diagr. 3, 177–183 (1982). https://doi.org/10.1007/BF02892377

    Article  Google Scholar 

  49. Gąsior, W., Onderka, B., Moser, Z., et al.: Thermodynamic evaluation of Cu-Li phase diagram from EMF measurements and DTA study. Calphad 33, 215–220 (2009). https://doi.org/10.1016/j.calphad.2008.10.006

    Article  CAS  Google Scholar 

  50. Adams, B.D., Zheng, J.M., Ren, X.D., et al.: Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018). https://doi.org/10.1002/aenm.201702097

    Article  CAS  Google Scholar 

  51. Sun, M.H., Wei, J.K., Xu, Z., et al.: Electrochemical solid-state amorphization in the immiscible Cu-Li system. Sci. Bull. 63, 1208–1214 (2018). https://doi.org/10.1016/j.scib.2018.06.021

    Article  CAS  Google Scholar 

  52. Jin, S., Ye, Y.D., Niu, Y.J., et al.: Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020). https://doi.org/10.1021/jacs.0c01811

    Article  CAS  PubMed  Google Scholar 

  53. Guo, B.C., Guo, P.Y., Zhao, G.H., et al.: A solid-solution-based Li-Mg alloy for highly stable lithium metal anodes. Sustain. Energy Fuels 6, 4137–4145 (2022). https://doi.org/10.1039/d2se00910b

    Article  CAS  Google Scholar 

  54. Braga, M.H., Dębski, A., Terlicka, S., et al.: Experimental and ab initio study of the Ag-Li system for energy storage and high-temperature solders. J. Alloys Compd. 817, 152811 (2020). https://doi.org/10.1016/j.jallcom.2019.152811

    Article  CAS  Google Scholar 

  55. Krauskopf, T., Mogwitz, B., Rosenbach, C., et al.: Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019). https://doi.org/10.1002/aenm.201902568

    Article  CAS  Google Scholar 

  56. Choi, H.J., Kang, D.W., Park, J.W., et al.: In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv. Sci. 9, 2103826 (2022). https://doi.org/10.1002/advs.202103826

    Article  CAS  Google Scholar 

  57. Lee, Y.G., Fujiki, S., Jung, C., et al.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020). https://doi.org/10.1038/s41560-020-0575-z

    Article  CAS  Google Scholar 

  58. Prasad, N.E., Ramachandran, T.R.: Phase diagrams and phase reactions in Al-Li alloys. In: Prasad, N.E., Gokhale, A.A., Wanhill, R.J.H. (eds.) Aluminum-Lithium Alloys, pp. 61–97. Butterworth-Heinemann, Boston (2014)

    Chapter  Google Scholar 

  59. Pan, H., Zhang, M.H., Cheng, Z., et al.: Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372372 (2022). https://doi.org/10.1126/sciadv.abn4372

    Article  CAS  Google Scholar 

  60. Huggins, R.A.: Lithium alloy negative electrodes. J. Power Sources 81(82), 13–19 (1999). https://doi.org/10.1016/s0378-7753(99)00124-x

    Article  Google Scholar 

  61. Boukamp, B.A., Lesh, G.C., Huggins, R.A.: All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981). https://doi.org/10.1149/1.2127495

    Article  CAS  Google Scholar 

  62. Obrovac, M.N., Chevrier, V.L.: Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014). https://doi.org/10.1021/cr500207g

    Article  CAS  PubMed  Google Scholar 

  63. Taillades, G., Sarradin, J.: Silver: high performance anode for thin film lithium ion batteries. J. Power Sources 125, 199–205 (2004). https://doi.org/10.1016/j.jpowsour.2003.07.004

    Article  CAS  Google Scholar 

  64. Beutl, A., Fürtauer, S., Flandorfer, H.: A novel apparatus for coulometric titrations in lithium containing systems. Thermochim. Acta 653, 8–15 (2017). https://doi.org/10.1016/j.tca.2017.03.025

    Article  CAS  Google Scholar 

  65. Hänsel, C., Singh, B., Kiwic, D., et al.: Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li-In/Sn anodes in sulfide electrolyte-based solid-state batteries. Chem. Mater. 33, 6029–6040 (2021). https://doi.org/10.1021/acs.chemmater.1c01431

    Article  CAS  Google Scholar 

  66. Mayo, M., Morris, A.J.: Structure prediction of Li-Sn and Li-Sb intermetallics for lithium-ion batteries anodes. Chem. Mater. 29, 5787–5795 (2017). https://doi.org/10.1021/acs.chemmater.6b04914

    Article  CAS  Google Scholar 

  67. Huo, H.Y., Janek, J.: Silicon as emerging anode in solid-state batteries. ACS Energy Lett. 7, 4005–4016 (2022). https://doi.org/10.1021/acsenergylett.2c01950

    Article  CAS  Google Scholar 

  68. Pelton, A.D.: General phase diagram sections. In: Pelton, A.D. (ed.) Phase Diagrams and Thermodynamic Modeling of Solutions, pp. 103–131. Elsevier, Amsterdam (2019)

    Google Scholar 

  69. Li, Y.J., Li, J.P., Xiao, H., et al.: A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Adv. Funct. Mater. 33, 2213905 (2023). https://doi.org/10.1002/adfm.202213905

    Article  CAS  Google Scholar 

  70. Qu, J.L., Xiao, J.W., Wang, T.S., et al.: High rate transfer mechanism of lithium ions in lithium-tin and lithium-indium alloys for lithium batteries. J. Phys. Chem. C 124, 24644–24652 (2020). https://doi.org/10.1021/acs.jpcc.0c07880

    Article  CAS  Google Scholar 

  71. Lu, Y., Zhao, C.Z., Zhang, R., et al.: The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 7, eabi5520 (2021). https://doi.org/10.1126/sciadv.abi5520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ga̧sior, W., Moser, Z.: Chemical diffusion coefficients in solid Al-Li alloys at low Li concentrations. Scand. J. Metall. 31, 353–358 (2002). https://doi.org/10.1034/j.1600-0692.2002.00465.x

    Article  Google Scholar 

  73. Jow, T.R., Liang, C.C.: Lithium-aluminum electrodes at ambient temperatures. J. Electrochem. Soc. 129, 1429–1434 (1982). https://doi.org/10.1149/1.2124178

    Article  CAS  Google Scholar 

  74. Korblein, A., Heitjans, P., Stockmann, H.J., et al.: Diffusion processes in solid Li-Mg and Li-Ag alloys and the spin-lattice relaxation of 8Li. J. Phys. F: Met. Phys. 15, 561–577 (1985). https://doi.org/10.1088/0305-4608/15/3/011

    Article  Google Scholar 

  75. Zhang, Y., Ravi Chandran, K.S., Jagannathan, M., et al.: The nature of electrochemical delithiation of Li-Mg alloy electrodes: neutron computed tomography and analytical modeling of Li diffusion and delithiation phenomenon. J. Electrochem. Soc. 164, A28–A38 (2016). https://doi.org/10.1149/2.0051702jes

    Article  CAS  Google Scholar 

  76. Choi, Y.S., Scanlon, D.O., Lee, J.C.: Extending the performance limit of anodes: insights from diffusion kinetics of alloying anodes. Adv. Energy Mater. 11, 2003078 (2021). https://doi.org/10.1002/aenm.202003078

    Article  CAS  Google Scholar 

  77. Ye, Y.D., Xie, H.Y., Yang, Y.H., et al.: Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc. 145, 24775–24784 (2023). https://doi.org/10.1021/jacs.3c08711

    Article  CAS  Google Scholar 

  78. Luo, S.T., Wang, Z.Y., Li, X.L., et al.: Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021). https://doi.org/10.1038/s41467-021-27311-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zeng, D.W., Yao, J.M., Zhang, L., et al.: Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun. 13, 1909 (2022). https://doi.org/10.1038/s41467-022-29596-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shi, P., Cheng, X.B., Li, T., et al.: Electrochemical diagram of an ultrathin lithium metal anode in pouch cells. Adv. Mater. 31, 1902785 (2019). https://doi.org/10.1002/adma.201902785

    Article  CAS  Google Scholar 

  81. Su, Y.B., Ye, L.H., Fitzhugh, W., et al.: A more stable lithium anode by mechanical constriction for solid state batteries. Energy Environ. Sci. 13, 908–916 (2020). https://doi.org/10.1039/c9ee04007b

    Article  CAS  Google Scholar 

  82. Ye, L.H., Li, X.: A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3

    Article  CAS  PubMed  Google Scholar 

  83. Lee, G.H., Lee, S.G., Park, S.H., et al.: Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries. J. Mater. Chem. A 10, 10662–10671 (2022). https://doi.org/10.1039/d1ta11066g

    Article  CAS  Google Scholar 

  84. Cao, D.X., Sun, X., Li, Y.J., et al.: Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes. Adv. Mater. 34, 2200401 (2022). https://doi.org/10.1002/adma.202200401

    Article  CAS  Google Scholar 

  85. Wu, X.H., Billaud, J., Jerjen, I., et al.: Operando visualization of morphological dynamics in all-solid-state batteries. Adv. Energy Mater. 9, 1901547 (2019). https://doi.org/10.1002/aenm.201901547

    Article  CAS  Google Scholar 

  86. Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012). https://doi.org/10.1021/nn204476h

    Article  CAS  PubMed  Google Scholar 

  87. Liu, H.B., Sun, Q., Zhang, H.Q., et al.: The application road of silicon-based anode in lithium-ion batteries: from liquid electrolyte to solid-state electrolyte. Energy Storage Mater. 55, 244–263 (2023). https://doi.org/10.1016/j.ensm.2022.11.054

    Article  Google Scholar 

  88. Hirai, K., Ichitsubo, T., Uda, T., et al.: Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 56, 1539–1545 (2008). https://doi.org/10.1016/j.actamat.2007.12.002

    Article  CAS  Google Scholar 

  89. Li, H.Y., Yamaguchi, T., Matsumoto, S., et al.: Circumventing huge volume strain in alloy anodes of lithium batteries. Nat. Commun. 11, 1584 (2020). https://doi.org/10.1038/s41467-020-15452-0

    Article  PubMed  PubMed Central  Google Scholar 

  90. Heligman, B.T., Manthiram, A.: Elemental foil anodes for lithium-ion batteries. ACS Energy Lett. 6, 2666–2672 (2021). https://doi.org/10.1021/acsenergylett.1c01145

    Article  CAS  Google Scholar 

  91. Lee, S.W., McDowell, M.T., Berla, L.A., et al.: Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl. Acad. Sci. U. S. A. 109, 4080–4085 (2012). https://doi.org/10.1073/pnas.1201088109

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhao, K.J., Pharr, M., Wan, Q., et al.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238–A243 (2012). https://doi.org/10.1149/2.020203jes

    Article  CAS  Google Scholar 

  93. Sun, F., Dong, K., Osenberg, M., et al.: Visualizing the morphological and compositional evolution of the interface of InLi-anode|thio-LISION electrolyte in an all-solid-state Li-S cell by in operando synchrotron X-ray tomography and energy dispersive diffraction. J. Mater. Chem. A 6, 22489–22496 (2018). https://doi.org/10.1039/c8ta08821g

    Article  CAS  Google Scholar 

  94. Wu, H., Chan, G., Choi, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310–315 (2012). https://doi.org/10.1038/nnano.2012.35

    Article  CAS  PubMed  Google Scholar 

  95. Liang, W.T., Yang, H., Fan, F.F., et al.: Tough germanium nanoparticles under electrochemical cycling. ACS Nano 7, 3427–3433 (2013). https://doi.org/10.1021/nn400330h

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, W.B., Schröder, D., Arlt, T., et al.: (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J. Mater. Chem. A 5, 9929–9936 (2017). https://doi.org/10.1039/c7ta02730c

    Article  CAS  Google Scholar 

  97. Hänsel, C., Kumar, P.V., Kundu, D.P.: Stack pressure effect in Li3PS4 and Na3PS4 based alkali metal solid-state cells: the dramatic implication of interlayer growth. Chem. Mater. 32, 10501–10510 (2020). https://doi.org/10.1021/acs.chemmater.0c03444

    Article  CAS  Google Scholar 

  98. Lim, H., Jun, S., Song, Y.B., et al.: Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Mater. 50, 543–553 (2022). https://doi.org/10.1016/j.ensm.2022.05.050

    Article  Google Scholar 

  99. Obrovac, M.N., Christensen, L., Le, D.B., et al.: Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 154, A849 (2007). https://doi.org/10.1149/1.2752985

    Article  CAS  Google Scholar 

  100. Han, S.Y., Lee, C., Lewis, J.A., et al.: Stress evolution during cycling of alloy-anode solid-state batteries. Joule 5, 2450–2465 (2021). https://doi.org/10.1016/j.joule.2021.07.002

    Article  CAS  Google Scholar 

  101. Ham, S.Y., Yang, H.D., Nunez-cuacuas, O., et al.: Assessing the critical current density of all-solid-state Li metal symmetric and full cells. Energy Storage Mater. 55, 455–462 (2023). https://doi.org/10.1016/j.ensm.2022.12.013

    Article  Google Scholar 

  102. Fan, X.L., Ji, X., Han, F.D., et al.: Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, eaau9245 (2018). https://doi.org/10.1126/sciadv.aau9245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lepley, N.D., Holzwarth, N.A.W., Du, Y.J.A.: Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles. Phys. Rev. B 88, 104103 (2013). https://doi.org/10.1103/PhysRevB.88.104103

    Article  CAS  Google Scholar 

  104. Nagao, M., Hayashi, A., Tatsumisago, M., et al.: In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600 (2013). https://doi.org/10.1039/c3cp51059j

    Article  CAS  PubMed  Google Scholar 

  105. Yi, J.G., Zhou, D., Liang, Y.H., et al.: Enabling high-performance all-solid-state lithium batteries with high ionic conductive sulfide-based composite solid electrolyte and ex-situ artificial SEI film. J. Energy Chem. 58, 17–24 (2021). https://doi.org/10.1016/j.jechem.2020.09.038

    Article  CAS  Google Scholar 

  106. Jiang, Z., Li, Z.X., Wang, X.L., et al.: Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface. ACS Appl. Mater. Interfaces 13, 30739–30745 (2021). https://doi.org/10.1021/acsami.1c07947

    Article  CAS  PubMed  Google Scholar 

  107. Liu, Y., Peng, H.L., Su, H., et al.: Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity. Adv. Mater. 34, 2107346 (2022). https://doi.org/10.1002/adma.202107346

    Article  CAS  Google Scholar 

  108. Hiratani, M.: Effect of a lithium alloy layer inserted between a lithium anode and a solid electrolyte. Solid State Ion. 28(29/30), 1406–1410 (1988). https://doi.org/10.1016/0167-2738(88)90394-3

    Article  Google Scholar 

  109. Takada, K.: Solid state lithium battery with oxysulfide glass. Solid State Ion. 86(87/88), 877–882 (1996). https://doi.org/10.1016/0167-2738(96)00199-3

    Article  Google Scholar 

  110. Notten, P., Roozeboom, F., Niessen, R., et al.: 3-D integrated all-solid-state rechargeable batteries. Adv. Mater. 19, 4564–4567 (2007). https://doi.org/10.1002/adma.200702398

    Article  CAS  Google Scholar 

  111. Han, X.G., Gong, Y.H., Fu, K., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017). https://doi.org/10.1038/nmat4821

    Article  CAS  PubMed  Google Scholar 

  112. Yang, C.P., Xie, H., Ping, W.W., et al.: An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 31, 1804815 (2019). https://doi.org/10.1002/adma.201804815

    Article  CAS  Google Scholar 

  113. Park, R.J.Y., Eschler, C.M., Fincher, C.D., et al.: Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nat. Energy 6, 314–322 (2021). https://doi.org/10.1038/s41560-021-00786-w

    Article  CAS  Google Scholar 

  114. Tan, D.H.S., Chen, Y.T., Yang, H.D., et al.: Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373, 1494–1499 (2021). https://doi.org/10.1126/science.abg7217

    Article  CAS  PubMed  Google Scholar 

  115. Wan, H.L., Wang, Z.Y., Zhang, W.R., et al.: Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023). https://doi.org/10.1038/s41586-023-06653-w

    Article  CAS  PubMed  Google Scholar 

  116. Yan, W.L., Mu, Z.L., Wang, Z.X., et al.: Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 8, 800–813 (2023). https://doi.org/10.1038/s41560-023-01279-8

    Article  CAS  Google Scholar 

  117. Wan, J., Song, Y.X., Chen, W.P., et al.: Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. J. Am. Chem. Soc. 143, 839–848 (2021). https://doi.org/10.1021/jacs.0c10121

    Article  CAS  PubMed  Google Scholar 

  118. Li, D.Q., Chu, F.L., He, Z.J., et al.: Single-material aluminum foil as anodes enabling high-performance lithium-ion batteries: the roles of prelithiation and working mechanism. Mater. Today 58, 80–90 (2022). https://doi.org/10.1016/j.mattod.2022.07.004

    Article  CAS  Google Scholar 

  119. Kim, M.S., Deepika, N., Lee, S.H., et al.: Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes. Sci. Adv. 5, eaax5587 (2019). https://doi.org/10.1126/sciadv.aax5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  121. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  122. Wu, Z., Li, X.H., Zheng, C., et al.: Interfaces in sulfide solid electrolyte-based all-solid-state lithium batteries: characterization, mechanism and strategy. Electrochem. Energy Rev. 6, 10 (2023). https://doi.org/10.1007/s41918-022-00176-0

    Article  CAS  Google Scholar 

  123. Nakamura, T., Amezawa, K., Kulisch, J., et al.: Guidelines for all-solid-state battery design and electrode buffer layers based on chemical potential profile calculation. ACS Appl. Mater. Interfaces 11, 19968–19976 (2019). https://doi.org/10.1021/acsami.9b03053

    Article  CAS  PubMed  Google Scholar 

  124. Zhu, Y.Z., He, X.F., Mo, Y.F.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  PubMed  Google Scholar 

  125. Chen, S.J., Xie, D.J., Liu, G.Z., et al.: Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Mater. 14, 58–74 (2018). https://doi.org/10.1016/j.ensm.2018.02.020

    Article  Google Scholar 

  126. Wenzel, S., Weber, D.A., Leichtweiss, T., et al.: Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 286, 24–33 (2016). https://doi.org/10.1016/j.ssi.2015.11.034

    Article  CAS  Google Scholar 

  127. Gao, J., Zhu, J.X., Li, X.L., et al.: Rational design of mixed electronic-ionic conducting Ti-doping Li7La3Zr2O12 for lithium dendrites suppression. Adv. Funct. Mater. 31, 2001918 (2021). https://doi.org/10.1002/adfm.202001918

    Article  CAS  Google Scholar 

  128. Riegger, L.M., Schlem, R., Sann, J., et al.: Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries. Angew. Chem. Int. Ed. 60, 6718–6723 (2021). https://doi.org/10.1002/anie.202015238

    Article  CAS  Google Scholar 

  129. Riegger, L.M., Otto, S.K., Sadowski, M., et al.: Instability of the Li7SiPS8 solid electrolyte at the lithium metal anode and interphase formation. Chem. Mater. 34, 3659–3669 (2022). https://doi.org/10.1021/acs.chemmater.1c04302

    Article  CAS  Google Scholar 

  130. Il’ina, E.A., Lylin, E.D., Plekhanov, M.S.: Investigation of Li-In alloy application as anode for all-solid-state batteries. J. Phys.: Conf. Ser. 1967, 012012 (2021). https://doi.org/10.1088/1742-6596/1967/1/012012

  131. Santhosha, A.L., Medenbach, L., Buchheim, J.R., et al.: The indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter. Supercaps 2, 524–529 (2019). https://doi.org/10.1002/batt.201800149

    Article  CAS  Google Scholar 

  132. Li, X.N., Liang, J.W., Chen, N., et al.: Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019). https://doi.org/10.1002/anie.201909805

    Article  CAS  Google Scholar 

  133. Park, K.H., Kaup, K., Assoud, A., et al.: High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020). https://doi.org/10.1021/acsenergylett.9b02599

    Article  CAS  Google Scholar 

  134. Koç, T., Hallot, M., Quemin, E., et al.: Toward optimization of the chemical/electrochemical compatibility of halide solid electrolytes in all-solid-state batteries. ACS Energy Lett. 7, 2979–2987 (2022). https://doi.org/10.1021/acsenergylett.2c01668

    Article  CAS  Google Scholar 

  135. Liu, Y., Su, H., Zhong, Y., et al.: Revealing the impact of Cl substitution on the crystallization behavior and interfacial stability of superionic lithium argyrodites. Adv. Funct. Mater. 32, 2207978 (2022). https://doi.org/10.1002/adfm.202207978

    Article  CAS  Google Scholar 

  136. Yamada, Y., Furukawa, K., Sodeyama, K., et al.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136, 5039–5046 (2014). https://doi.org/10.1021/ja412807w

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, W.D., Wu, Q., Huang, J.X., et al.: Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 32, 2001740 (2020). https://doi.org/10.1002/adma.202001740

    Article  CAS  Google Scholar 

  138. Yang, Q.F., Hu, J.L., Meng, J.W., et al.: C-F-rich oil drop as a non-expendable fluid interface modifier with low surface energy to stabilize a Li metal anode. Energy Environ. Sci. 14, 3621–3631 (2021). https://doi.org/10.1039/d0ee03952g

    Article  CAS  Google Scholar 

  139. Liu, F.F., Wang, L.F., Zhang, Z.W., et al.: A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv. Funct. Mater. 30, 2001607 (2020). https://doi.org/10.1002/adfm.202001607

    Article  CAS  Google Scholar 

  140. Chen, J., Fan, X.L., Li, Q., et al.: Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1

    Article  CAS  Google Scholar 

  141. Ming, J., Cao, Z., Wahyudi, W., et al.: New insights on graphite anode stability in rechargeable batteries: Li ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett. 3, 335–340 (2018). https://doi.org/10.1021/acsenergylett.7b01177

    Article  CAS  Google Scholar 

  142. Gao, T., Han, Y., Fraggedakis, D., et al.: Interplay of lithium intercalation and plating on a single graphite particle. Joule 5, 393–414 (2021). https://doi.org/10.1016/j.joule.2020.12.020

    Article  CAS  Google Scholar 

  143. Lewis, J.A., Cavallaro, K.A., Liu, Y., et al.: The promise of alloy anodes for solid-state batteries. Joule 6, 1418–1430 (2022). https://doi.org/10.1016/j.joule.2022.05.016

    Article  CAS  Google Scholar 

  144. Janek, J., Zeier, W.G.: A solid future for battery development. Nat. Energy 1, 16141 (2016). https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  145. Randau, S., Weber, D.A., Kötz, O., et al.: Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1

    Article  CAS  Google Scholar 

  146. Sun, Y.L., Suzuki, K., Hori, S., et al.: Superionic conductors: Li10+δ[SnySi1−y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4-Li4SnS4-Li4SiS4 quasi-ternary system. Chem. Mater. 29, 5858–5864 (2017). https://doi.org/10.1021/acs.chemmater.7b00886

    Article  CAS  Google Scholar 

  147. Huang, W.Z., Yoshino, K., Hori, S., et al.: Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system. J. Solid State Chem. 270, 487–492 (2019). https://doi.org/10.1016/j.jssc.2018.12.015

    Article  CAS  Google Scholar 

  148. Wang, C.H., Liang, J.W., Kim, J.T., et al.: Prospects of halide-based all-solid-state batteries: from material design to practical application. Sci. Adv. 8, eadc9516 (2022). https://doi.org/10.1126/sciadv.adc9516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liang, J.W., Li, X.N., Wang, S., et al.: Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020). https://doi.org/10.1021/jacs.0c00134

    Article  CAS  PubMed  Google Scholar 

  150. Kanno, R., Murayama, M., Inada, T., et al.: A self-assembled breathing interface for all-solid-state ceramic lithium batteries. Electrochem. Solid-State Lett. 7, A455 (2004). https://doi.org/10.1149/1.1809553

    Article  CAS  Google Scholar 

  151. Liu, Y., Wang, C.C., Yoon, S.G., et al.: Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries. Nat. Commun. 14, 3975 (2023). https://doi.org/10.1038/s41467-023-39685-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhong, C., Guo, C., Jin, X., et al.: Gradient electrodeposition enables high-throughput fabrication and screening of alloy anodes for high-energy lithium-ion batteries. Mater. Today Energy 18, 100528 (2020). https://doi.org/10.1016/j.mtener.2020.100528

    Article  CAS  Google Scholar 

  153. Zhou, D.B., Liu, Z.J., Lv, X.K., et al.: Electrochemical studies of LiB compound as anode material for lithium-ion battery. Electrochim. Acta 51, 5731–5737 (2006). https://doi.org/10.1016/j.electacta.2006.03.023

    Article  CAS  Google Scholar 

  154. Liu, X., Wu, X.Y., Chang, B.B., et al.: Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater. 30, 146–169 (2020). https://doi.org/10.1016/j.ensm.2020.05.010

    Article  Google Scholar 

  155. He, J., Wei, Y.Q., Zhai, T.Y., et al.: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front. 2, 437–455 (2018). https://doi.org/10.1039/c7qm00480j

    Article  CAS  Google Scholar 

  156. DeVries, L.E., Jackson, L.D., James, S.D.: Structure and anodic discharge behavior of lithium-boron alloys in the LiCl-KCl eutectic melt(II). J. Electrochem. Soc. 126, 993–996 (1979). https://doi.org/10.1149/1.2129222

    Article  CAS  Google Scholar 

  157. Sanchez, P., Belin, C., Crepy, G., et al.: Preparation and characterization of lithium-boron alloys: electrochemical studies as anodes in molten salt media, and comparison with pure lithium-involving systems. J. Mater. Sci. 27, 240–246 (1992). https://doi.org/10.1007/BF00553862

    Article  CAS  Google Scholar 

  158. Sanchez, P., Belin, C., Crepy, C., et al.: Electrochemical studies of lithium-boron alloys in non-aqueous media: comparison with pure lithium. J. Appl. Electrochem. 19, 421–428 (1989). https://doi.org/10.1007/BF01015246

    Article  CAS  Google Scholar 

  159. Netz, A., Huggins, R.A., Weppner, W.: Investigations of a number of alternative negative electrode materials for use in lithium cells. Ionics 7, 433–439 (2001). https://doi.org/10.1007/BF02373580

    Article  CAS  Google Scholar 

  160. Duan, B., Wang, W., Zhao, H., et al.: Li-B alloy as anode material for lithium/sulfur battery. ECS Electrochem. Lett. 2, A47–A51 (2013). https://doi.org/10.1149/2.005306eel

    Article  CAS  Google Scholar 

  161. Weker, J.N., Liu, N., Misra, S., et al.: In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ. Sci. 7, 2771–2777 (2014). https://doi.org/10.1039/c4ee01384k

    Article  CAS  Google Scholar 

  162. Kennedy, T., Brandon, M., Ryan, K.M.: Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries. Adv. Mater. 28, 5696–5704 (2016). https://doi.org/10.1002/adma.201503978

    Article  CAS  PubMed  Google Scholar 

  163. Chen, G.D., Sun, J.R., Li, J.D., et al.: Revealing capacity degradation of Ge anodes in lithium-ion batteries triggered by interfacial LiH. Angew. Chem. Int. Ed. 62, 2306141 (2023). https://doi.org/10.1002/anie.202306141

    Article  CAS  Google Scholar 

  164. Weppner, W., Huggins, R.A.: Thermodynamic properties of the intermetallic systems lithium-antimony and lithium-bismuth. J. Electrochem. Soc. 125, 7–14 (1978). https://doi.org/10.1149/1.2131401

    Article  CAS  Google Scholar 

  165. Weppner, W., Huggins, R.A.: Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 124, 1569–1578 (1977). https://doi.org/10.1149/1.2133112

    Article  CAS  Google Scholar 

  166. Hou, H.S., Jing, M.J., Yang, Y.C., et al.: Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J. Mater. Chem. A 3, 2971–2977 (2015). https://doi.org/10.1039/c4ta06476c

    Article  CAS  Google Scholar 

  167. Guo, Y.G., Hu, J.S., Wan, L.J.: Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 20, 2878–2887 (2008). https://doi.org/10.1002/adma.200800627

    Article  Google Scholar 

  168. Kim, H., Cho, J.: Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem. Mater. 20, 1679–1681 (2008). https://doi.org/10.1021/cm703401u

    Article  CAS  Google Scholar 

  169. Gong, H.X., Chen, Y.L., Chen, S.C., et al.: Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. ACS Energy Lett. 7, 4417–4426 (2022). https://doi.org/10.1021/acsenergylett.2c02130

    Article  CAS  Google Scholar 

  170. Ko, M., Chae, S., Ma, J., et al.: Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy 1, 16113 (2016). https://doi.org/10.1038/nenergy.2016.113

    Article  CAS  Google Scholar 

  171. Son, Y., Ma, J., Kim, N., et al.: Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode. Adv. Energy Mater. 9, 1803480 (2019). https://doi.org/10.1002/aenm.201803480

    Article  CAS  Google Scholar 

  172. Lai, Y.Z., Li, H.Y., Yang, Q., et al.: Revisit the progress of binders for a silicon-based anode from the perspective of designed binder structure and special sized silicon nanoparticles. Ind. Eng. Chem. Res. 61, 6246–6268 (2022). https://doi.org/10.1021/acs.iecr.2c00453

    Article  CAS  Google Scholar 

  173. Zhang, L., Wang, C.R., Dou, Y.H., et al.: A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem. Int. Ed. 58, 8824–8828 (2019). https://doi.org/10.1002/anie.201903709

    Article  CAS  Google Scholar 

  174. Yang, Z., Jiang, M.X., Cui, C., et al.: In-situ cross-linking strategy for stabilizing the LEDC of the solid-electrolyte interphase in lithium-ion batteries. Nano Energy 105, 107993 (2023). https://doi.org/10.1016/j.nanoen.2022.107993

    Article  CAS  Google Scholar 

  175. Lee, J., Jin, D., Kim, J.Y., et al.: Dry pre-lithiation for graphite-silicon diffusion-dependent electrode for all-solid-state battery. Adv. Energy Mater. 13, 2300172 (2023). https://doi.org/10.1002/aenm.202300172

    Article  CAS  Google Scholar 

  176. Zhu, B., Liu, G.L., Lv, G.X., et al.: Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci. Adv. 5, eaax0651 (2019). https://doi.org/10.1126/sciadv.aax0651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yang, Y.F., Wang, J.Y., Kim, S.C., et al.: In situ prelithiation by direct integration of lithium mesh into battery cells. Nano Lett. 23, 5042–5047 (2023). https://doi.org/10.1021/acs.nanolett.3c00859

    Article  CAS  PubMed  Google Scholar 

  178. Huang, Y.L., Shao, B.W., Wang, Y., et al.: Solid-state silicon anode with extremely high initial coulombic efficiency. Energy Environ. Sci. 16, 1569–1580 (2023). https://doi.org/10.1039/d2ee04057c

    Article  CAS  Google Scholar 

  179. Zhan, X., Li, M., Li, S., et al.: Challenges and opportunities towards silicon-based all-solid-state batteries. Energy Storage Mater. 61, 102875 (2023). https://doi.org/10.1016/j.ensm.2023.102875

    Article  Google Scholar 

  180. Shoji, M., Cheng, E.J., Kimura, T., et al.: Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J. Phys. D Appl. Phys. 52, 103001 (2019). https://doi.org/10.1088/1361-6463/aaf7e2

    Article  CAS  Google Scholar 

  181. Wang, Y.Y., Diao, W.Y., Fan, C.Y., et al.: Benign recycling of spent batteries towards all-solid-state lithium batteries. Chem. 25, 8975–8981 (2019). https://doi.org/10.1002/chem.201900845

    Article  CAS  Google Scholar 

  182. Cangaz, S., Hippauf, F., Reuter, F.S., et al.: Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv. Energy Mater. 10, 2001320 (2020). https://doi.org/10.1002/aenm.202001320

    Article  CAS  Google Scholar 

  183. Han, F.D., Zhu, Y.Z., He, X.F., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  184. Schwietert, T.K., Arszelewska, V.A., Wang, C., et al.: Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020). https://doi.org/10.1038/s41563-019-0576-0

    Article  CAS  PubMed  Google Scholar 

  185. Wang, Y., Wu, Y.J., Wang, Z.X., et al.: Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J. Mater. Chem. A 10, 4517–4532 (2022). https://doi.org/10.1039/d1ta10966a

    Article  CAS  Google Scholar 

  186. Yu, T., Ke, B.Y., Li, H.Y., et al.: Recent advances in sulfide electrolytes toward high specific energy solid-state lithium batteries. Mater. Chem. Front. 5, 4892–4911 (2021). https://doi.org/10.1039/d1qm00474c

    Article  CAS  Google Scholar 

  187. Trevey, J., Jang, J.S., Jung, Y.S., et al.: Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries. Electrochem. Commun. 11, 1830–1833 (2009). https://doi.org/10.1016/j.elecom.2009.07.028

    Article  CAS  Google Scholar 

  188. Dunlap, N.A., Kim, S., Jeong, J.J., et al.: Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state Li-ion batteries. Solid State Ion. 324, 207–217 (2018). https://doi.org/10.1016/j.ssi.2018.07.013

    Article  CAS  Google Scholar 

  189. Piper, D.M., Yersak, T.A., Lee, S.H.: Effect of compressive stress on electrochemical performance of silicon anodes. J. Electrochem. Soc. 160, A77–A81 (2012). https://doi.org/10.1149/2.064301jes

    Article  CAS  Google Scholar 

  190. Yamamoto, M., Terauchi, Y., Sakuda, A., et al.: Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability. J. Power Sources 402, 506–512 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.070

    Article  CAS  Google Scholar 

  191. Cao, D.X., Sun, X., Wang, Y., et al.: Bipolar stackings high voltage and high cell level energy density sulfide based all-solid-state batteries. Energy Storage Mater. 48, 458–465 (2022). https://doi.org/10.1016/j.ensm.2022.03.012

    Article  Google Scholar 

  192. Zhang, W.B., Leichtweiß, T., Culver, S.P., et al.: The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888–35896 (2017). https://doi.org/10.1021/acsami.7b11530

    Article  CAS  PubMed  Google Scholar 

  193. Chen, C., Li, Q., Li, Y.Q., et al.: Sustainable interfaces between Si anodes and garnet electrolytes for room-temperature solid-state batteries. ACS Appl. Mater. Interfaces 10, 2185–2190 (2018). https://doi.org/10.1021/acsami.7b16385

    Article  CAS  PubMed  Google Scholar 

  194. Ke, X.Y., Wang, Y., Dai, L.M., et al.: Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: lithium dendrites. Energy Storage Mater. 33, 309–328 (2020). https://doi.org/10.1016/j.ensm.2020.07.024

    Article  Google Scholar 

  195. Xiong, S.Z., Xu, X.Y., Jiao, X.X., et al.: Mechanical failure of solid-state electrolyte rooted in synergy of interfacial and internal defects. Adv. Energy Mater. 13, 2203614 (2023). https://doi.org/10.1002/aenm.202203614

    Article  CAS  Google Scholar 

  196. Liu, J., Yuan, H., Liu, H., et al.: Unlocking the failure mechanism of solid state lithium metal batteries. Adv. Energy Mater. 12, 2100748 (2022). https://doi.org/10.1002/aenm.202100748

    Article  CAS  Google Scholar 

  197. Kazyak, E., Garcia-Mendez, R., LePage, W.S., et al.: Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2, 1025–1048 (2020). https://doi.org/10.1016/j.matt.2020.02.008

    Article  Google Scholar 

  198. Lu, Y., Zhao, C.Z., Hu, J.K., et al.: The void formation behaviors in working solid-state Li metal batteries. Sci. Adv. 8, eadd0510 (2022). https://doi.org/10.1126/sciadv.add0510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, K., Kazyak, E., Wang, M.J., et al.: Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022). https://doi.org/10.1016/j.joule.2022.09.009

    Article  CAS  Google Scholar 

  200. Shishvan, S.S., Fleck, N.A., McMeeking, R.M., et al.: Vacancy diffusion and its consequences for void growth at the interface of a stripping metal electrode and solid electrolyte. Electrochim. Acta 467, 143081 (2023). https://doi.org/10.1016/j.electacta.2023.143081

    Article  CAS  Google Scholar 

  201. Ma, J., Zhang, S., Zheng, Y., et al.: Interelectrode talk in solid-state lithium-metal batteries. Adv. Mater. 35, 2301892 (2023). https://doi.org/10.1002/adma.202301892

    Article  CAS  Google Scholar 

  202. Kang, J., Shin, H.R., Yun, J., et al.: Chemo-mechanical failure of solid composite cathodes accelerated by high-strain anodes in all-solid-state batteries. Energy Storage Mater. 63, 103049 (2023). https://doi.org/10.1016/j.ensm.2023.103049

    Article  Google Scholar 

  203. Kato, A., Kowada, H., Deguchi, M., et al.: XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ion. 322, 1–4 (2018). https://doi.org/10.1016/j.ssi.2018.04.011

    Article  CAS  Google Scholar 

  204. Kato, A., Hayashi, A., Tatsumisago, M.: Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films. J. Power Sources 309, 27–32 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.068

    Article  CAS  Google Scholar 

  205. Chen, B.T., Zhang, J.C., Zhang, T.R., et al.: Constructing a superlithiophilic 3D burr-microsphere interface on garnet for high-rate and ultra-stable solid-state Li batteries. Adv. Sci. 10, 2207056 (2023). https://doi.org/10.1002/advs.202207056

    Article  CAS  Google Scholar 

  206. Jiang, J.L., Ou, Y.H., Lu, S.Y., et al.: In-situ construction of Li-Mg/LiF conductive layer to achieve an intimate lithium-garnet interface for all-solid-state Li metal battery. Energy Storage Mater. 50, 810–818 (2022). https://doi.org/10.1016/j.ensm.2022.06.011

    Article  Google Scholar 

  207. Shi, K., Wan, Z.P., Yang, L., et al.: In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 11784–11788 (2020). https://doi.org/10.1002/anie.202000547

    Article  CAS  Google Scholar 

  208. Zhong, Y.R., Xie, Y.J., Hwang, S., et al.: A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. Int. Ed. 59, 14003–14008 (2020). https://doi.org/10.1002/anie.202004477

    Article  CAS  Google Scholar 

  209. Chen, Y., Qian, J., Hu, X., et al.: Constructing a uniform and stable mixed conductive layer to stabilize the solid-state electrolyte/Li interface by cold bonding at mild conditions. Adv. Mater. 35, 2212096 (2023). https://doi.org/10.1002/adma.202212096

    Article  CAS  Google Scholar 

  210. Lee, K., Han, S., Lee, J., et al.: Multifunctional interface for high-rate and long-durable garnet-type solid electrolyte in lithium metal batteries. ACS Energy Lett. 7, 381–389 (2022). https://doi.org/10.1021/acsenergylett.1c02332

    Article  CAS  Google Scholar 

  211. Deng, T., Ji, X., Zhao, Y., et al.: Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries. Adv. Mater. 32, 2000030 (2020). https://doi.org/10.1002/adma.202000030

    Article  CAS  Google Scholar 

  212. He, X.Z., Ji, X., Zhang, B., et al.: Tuning interface lithiophobicity for lithium metal solid-state batteries. ACS Energy Lett. 7, 131–139 (2022). https://doi.org/10.1021/acsenergylett.1c02122

    Article  CAS  Google Scholar 

  213. Wang, T.R., Duan, J., Zhang, B., et al.: A self-regulated gradient interphase for dendrite-free solid-state Li batteries. Energy Environ. Sci. 15, 1325–1333 (2022). https://doi.org/10.1039/d1ee03604a

    Article  CAS  Google Scholar 

  214. He, G., Li, Q.W., Shen, Y.L., et al.: Flexible amalgam film enables stable lithium metal anodes with high capacities. Angew. Chem. Int. Ed. 58, 18466–18470 (2019). https://doi.org/10.1002/anie.201911800

    Article  CAS  Google Scholar 

  215. Fan, Y., Tao, T., Gao, Y.X., et al.: A self-healing amalgam interface in metal batteries. Adv. Mater. 32, 2004798 (2020). https://doi.org/10.1002/adma.202004798

    Article  CAS  Google Scholar 

  216. Zhang, Q., Wu, L., Fan, M.J., et al.: A room temperature alloying strategy to enable commercial metal foil for efficient Li/Na storage and deposition. Energy Storage Mater. 34, 708–715 (2021). https://doi.org/10.1016/j.ensm.2020.10.028

    Article  Google Scholar 

  217. Li, X.N., Liang, J.W., Li, X., et al.: High-performance all-solid-state Li-Se batteries induced by sulfide electrolytes. Energy Environ. Sci. 11, 2828–2832 (2018). https://doi.org/10.1039/c8ee01621f

    Article  CAS  Google Scholar 

  218. Fan, X.L., Yue, J., Han, F.D., et al.: High-performance all-solid-state Na-S battery enabled by casting-annealing technology. ACS Nano 12, 3360–3368 (2018). https://doi.org/10.1021/acsnano.7b08856

    Article  CAS  PubMed  Google Scholar 

  219. Huo, H.Y., Chen, Y., Li, R.Y., et al.: Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2020). https://doi.org/10.1039/c9ee01903k

    Article  CAS  Google Scholar 

  220. Krauskopf, T., Richter, F.H., Zeier, W.G., et al.: Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020). https://doi.org/10.1021/acs.chemrev.0c00431

    Article  CAS  PubMed  Google Scholar 

  221. Pathak, R., Chen, K., Gurung, A., et al.: Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020). https://doi.org/10.1038/s41467-019-13774-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Li, F., Tan, Y.H., Yin, Y.C., et al.: A fluorinated alloy-type interfacial layer enabled by metal fluoride nanoparticle modification for stabilizing Li metal anodes. Chem. Sci. 10, 9735–9739 (2019). https://doi.org/10.1039/c9sc01845j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Li, S., Yang, S.J., Liu, G.X., et al.: A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries. Adv. Mater. 36, 2307768 (2024). https://doi.org/10.1002/adma.202307768

    Article  CAS  Google Scholar 

  224. Liang, X., Pang, Q., Kochetkov, I.R., et al.: A facile surface chemistry route to a stabilized lithium metal anode. Nat. Energy 2, 17119 (2017). https://doi.org/10.1038/nenergy.2017.119

    Article  CAS  Google Scholar 

  225. Zhao, F.P., Alahakoon, S.H., Adair, K., et al.: An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv. Mater. 33, 2006577 (2021). https://doi.org/10.1002/adma.202006577

    Article  CAS  Google Scholar 

  226. Liu, H., Zhu, Q.S., Wang, C., et al.: High air stability and excellent Li metal compatibility of argyrodite-based electrolyte enabling superior all-solid-state Li metal batteries. Adv. Funct. Mater. 32, 2203858 (2022). https://doi.org/10.1002/adfm.202203858

    Article  CAS  Google Scholar 

  227. Ni, Y., Huang, C., Liu, H., et al.: A high air-stability and Li-metal-compatible Li3+2xXP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li-metal batteries. Adv. Funct. Mater. 32, 2205998 (2022). https://doi.org/10.1002/adfm.202205998

    Article  CAS  Google Scholar 

  228. Jiang, Z., Liu, Y., Peng, H.L., et al.: Enhanced air stability and interfacial compatibility of Li-argyrodite sulfide electrolyte triggered by CuBr co-substitution for all-solid-state lithium batteries. Energy Storage Mater. 56, 300–309 (2023). https://doi.org/10.1016/j.ensm.2023.01.018

    Article  Google Scholar 

  229. Taklu, B.W., Su, W.N., Nikodimos, Y., et al.: Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 90, 106542 (2021). https://doi.org/10.1016/j.nanoen.2021.106542

    Article  CAS  Google Scholar 

  230. Xu, B.Y., Li, X.Y., Yang, C., et al.: Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 143, 6542–6550 (2021). https://doi.org/10.1021/jacs.1c00752

    Article  CAS  PubMed  Google Scholar 

  231. Jia, W.S., Wang, Z.H., Li, J.Z., et al.: A dual-phase Li-Ca alloy with a patternable and lithiophilic 3D framework for improving lithium anode performance. J. Mater. Chem. A 7, 22377–22384 (2019). https://doi.org/10.1039/c9ta08798b

    Article  CAS  Google Scholar 

  232. Chen, L., Fan, X.L., Ji, X., et al.: High-energy Li metal battery with lithiated host. Joule 3, 732–744 (2019). https://doi.org/10.1016/j.joule.2018.11.025

    Article  CAS  Google Scholar 

  233. Wan, M.T., Kang, S.J., Wang, L., et al.: Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020). https://doi.org/10.1038/s41467-020-14550-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ding, X.L., Lu, X., Fu, Z.W., et al.: Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries. Electrochim. Acta 87, 230–235 (2013). https://doi.org/10.1016/j.electacta.2012.09.017

    Article  CAS  Google Scholar 

  235. Wu, C., Huang, H.F., Lu, W.Y., et al.: Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv. Sci. 7, 1902643 (2020). https://doi.org/10.1002/advs.201902643

    Article  CAS  Google Scholar 

  236. Chen, Z.R., Liang, Z.T., Zhong, H.Y., et al.: Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries. ACS Energy Lett. 7, 2761–2770 (2022). https://doi.org/10.1021/acsenergylett.2c01334

    Article  CAS  Google Scholar 

  237. Wang, M.Q., Peng, Z., Luo, W.W., et al.: Improving the interfacial stability between lithium and solid-state electrolyte via dipole-structured lithium layer deposited on graphene oxide. Adv. Sci. 7, 2000237 (2020). https://doi.org/10.1002/advs.202000237

    Article  CAS  Google Scholar 

  238. Park, S.H., Jun, D., Lee, G.H., et al.: Designing 3D anode based on pore-size-dependent Li deposition behavior for reversible Li-free all-solid-state batteries. Adv. Sci. 9, 2203130 (2022). https://doi.org/10.1002/advs.202203130

    Article  CAS  Google Scholar 

  239. Ye, S.F., Chen, X.J., Zhang, R., et al.: Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode. Nano Micro Lett. 14, 187 (2022). https://doi.org/10.1007/s40820-022-00932-3

    Article  CAS  Google Scholar 

  240. Yan, K., Lu, Z.D., Lee, H.W., et al.: Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016). https://doi.org/10.1038/nenergy.2016.10

    Article  CAS  Google Scholar 

  241. Wang, H.S., Cao, X., Gu, H.K., et al.: Improving lithium metal composite anodes with seeding and pillaring effects of silicon nanoparticles. ACS Nano 14, 4601–4608 (2020). https://doi.org/10.1021/acsnano.0c00184

    Article  CAS  PubMed  Google Scholar 

  242. Zhu, J.Q., Cai, D., Li, J.R., et al.: In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Mater. 49, 546–554 (2022). https://doi.org/10.1016/j.ensm.2022.05.001

    Article  Google Scholar 

  243. Wan, H.L., Wang, Z.Y., Liu, S.F., et al.: Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design. Nat. Energy 8, 473–481 (2023). https://doi.org/10.1038/s41560-023-01231-w

    Article  CAS  Google Scholar 

  244. Chen, L.H., Tong, R.A., Zhang, J.X., et al.: Reactive magnesium nitride additive: a drop-in solution for lithium/garnet wetting in all-solid-state batteries. Angew. Chem. Int. Ed. 62, 2305099 (2023). https://doi.org/10.1002/anie.202305099

    Article  CAS  Google Scholar 

  245. Qiu, H.L., Tang, T.Y., Asif, M., et al.: Stable lithium metal anode enabled by lithium metal partial alloying. Nano Energy 65, 103989 (2019). https://doi.org/10.1016/j.nanoen.2019.103989

    Article  CAS  Google Scholar 

  246. Huang, Y., Chen, B., Duan, J., et al.: Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries. Angew. Chem. Int. Ed. 59, 3699–3704 (2020). https://doi.org/10.1002/anie.201914417

    Article  CAS  Google Scholar 

  247. Wang, C.W., Xie, H., Zhang, L., et al.: Universal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater. 8, 1701963 (2018). https://doi.org/10.1002/aenm.201701963

    Article  CAS  Google Scholar 

  248. Wang, T.S., Zhai, P.B., Legut, D., et al.: S-doped graphene-regional nucleation mechanism for dendrite-free lithium metal anodes. Adv. Energy Mater. 9, 1804000 (2019). https://doi.org/10.1002/aenm.201804000

    Article  CAS  Google Scholar 

  249. Xu, Y., Zheng, H.Q., Yang, H., et al.: Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries. Nano Lett. 21, 8664–8670 (2021). https://doi.org/10.1021/acs.nanolett.1c02613

    Article  CAS  PubMed  Google Scholar 

  250. Li, J.R., Su, H., Jiang, Z., et al.: Domain-limited laminar lithium deposition behavior mediated by the design of hybrid anode for sulfide-based all-solid-state batteries. Acta Mater. 244, 118592 (2023). https://doi.org/10.1016/j.actamat.2022.118592

    Article  CAS  Google Scholar 

  251. Liu, C., Chen, B.T., Zhang, T.R., et al.: Electron redistribution enables redox-resistible Li6PS5Cl towards high-performance all-solid-state lithium batteries. Angew. Chem. Int. Ed. 62, 2302655 (2023). https://doi.org/10.1002/anie.202302655

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51971201, U20A20126, 52073253, and 52103350). Y. Zhong acknowledges the support by the Zhejiang Provincial Natural Science Foundation of China (No. LY23E020009). X.L. Wang acknowledges the support by Development Program of Zhejiang Province (No. 2022C01071).

Funding

National Natural Science Foundation of China, 51971201, Jiangping Tu; U20A20126, Jiangping Tu; 52103350, Yu Zhong; 52073253, Xiuli Wang. Zhejiang Provincial Natural Science Foundation of China, LY23E020009, Yu Zhong. Development Program of Zhejiang Province, 2022C01071, Xiuli Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Zhong or Jiangping Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical statement

We hereby declare that this manuscript is the result of all authors’ independent creation under the reviewer’s comments. Except for the quoted contents, this manuscript does not contain any research achievements that have been published or written by other individuals or groups. We are the only authors of this manuscript. The legal responsibility of this statement should be borne by the corresponding authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Su, H., Liu, Y. et al. Li Alloys in All Solid-State Lithium Batteries: A Review of Fundamentals and Applications. Electrochem. Energy Rev. 7, 18 (2024). https://doi.org/10.1007/s41918-024-00221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-024-00221-0

Keywords

Navigation