Skip to main content
Log in

Rice Straw and Swine Manure Anaerobic co-digestion Enhancement Through Bioaugmentation: Effect on the Microbial Community

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The degradation of agricultural residues and their bioconversion to methane is still hampered by the search for pre-treatment strategies due to the lignocellulosic content that limits the process efficiency. Adding an enriched microbial consortium could be an alternative for the biological treatment of lignocellulosic biomass. Therefore, during the degradation process, it is necessary to study the dynamics and structure of the microbial community. The objective of this study was to evaluate the addition of an enriched microbial consortium and its effect on the methane-producing prokaryotic community during the anaerobic co-digestion of rice straw and swine manure. Two 10 L semi-continuous stirred tank reactors were used (control and bioaugmentation), during 70 days at 35 ± 2 °C, increasing organic loading rates up to 1.8 g VS/L/d. The diversity and dynamics of the microbial community were analyzed and taxonomic identification was obtained by Ion Torrent metagenomic technique. A higher production was achieved in the bioaugmented reactor (approx. 344 LN/kgVS) concerning the control reactor, increasing the methane yield by 40% (v/v). The metagenomic method allowed the identification down to the genus and species level of the microbial consortium and the prokaryotic community of the reactors, which enabled the assumption of possible metabolic pathways. In both reactors, species diversity decreased over time, indicating a greater specialization of the microbial community. Cellulolytic and methanogenic acetoclastic microorganisms were favored, which supported the higher methane production obtained. The results demonstrate that the consortium could be used as a bioproduct to treat agricultural wastes for energy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alburquerque JA, de la Fuente C, Ferrer-Costa A et al (2012) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 40:181–189. https://doi.org/10.1016/j.biombioe.2012.02.018

    Article  CAS  Google Scholar 

  2. Bhatia SK, Jagtap SS, Bedekar AA et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  CAS  PubMed  Google Scholar 

  3. Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding Recalcitrance and Predicting Hydrolysis. Front Chem 7:478626. https://doi.org/10.3389/fchem.2019.00874

    Article  CAS  Google Scholar 

  4. Amarante EB, Schulz RK, Romero OR et al (2021) Emergy analysis the management of rice straw for energy purposes. Univ Soc 13:404–420 ISSN 2218–3620

    Google Scholar 

  5. López-Dávila E, Jiménez Hernández J, López González LM et al (2022) Biochemical methane potential of agro-wastes as a renewable source alternative for electrical energy production in Cuba. Cienc Tecnol Agropecu 23(1). https://doi.org/10.21930/rcta.vol23_num1_art:1890

  6. Tu W-C, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004

    Article  Google Scholar 

  7. Ali SS, Abomohra AE-F, Sun J (2017) Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour Technol 238:425–432. https://doi.org/10.1016/j.biortech.2017.03.187

    Article  CAS  PubMed  Google Scholar 

  8. Ummalyma SB, Supriya RD, Sindhu R et al (2019) Chap. 7 - Biological pretreatment of lignocellulosic biomass—current trends and future perspectives. In: Basile A, Dalena F (eds) Second and third generation of feedstocks. Elsevier, pp 197–212

  9. Shanmugam S, Sun C, Chen Z, Wu Y-R (2019) Enhanced bioconversion of hemicellulosic biomass by microbial consortium for biobutanol production with bioaugmentation strategy. Bioresour Technol 279:149–155. https://doi.org/10.1016/j.biortech.2019.01.121

    Article  CAS  PubMed  Google Scholar 

  10. Hernández-Beltrán JU, Hernández-De Lira IO, Cruz-Santos MM et al (2019) Insight into pretreatment methods of lignocellulosic biomass to increase Biogas Yield: current state, Challenges, and Opportunities. Appl Sci 9:3721. https://doi.org/10.3390/app9183721

    Article  CAS  Google Scholar 

  11. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  12. Madigan MT, Bender KS, Buckley DH et al (2019) Brock Biology Of Microorganisms, 15th ed. Pearson Education. http://gen.lib.rus.ec/book/index.php?md5=9287245C9084162B30208495CB1B59A1

  13. Sabra W, Dietz D, Tjahjasari D, Zeng A-P (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10:407–421. https://doi.org/10.1002/elsc.201000111

    Article  CAS  Google Scholar 

  14. Carabeo A, Jiménez J, Gil Z et al (2022) Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agron Colomb 40(2). https://doi.org/10.15446/agron.colomb.v40n2.101378

  15. Bridgewater LL (2017) Standard methods for the examination of water and wasterwater, 23rd edition. American Public Health Association, Washington, DC. ISBN:978-0-87553-287-5

  16. Energietechnik VDI-F (2016) VDI 4630 - fermentation of organic materials - characterization of the substrate, sampling, collection of material data, fermentation tests. VDI Society Energy and Environment.https://www.vdi.de/richtlinien/details/vdi-4630-vergaerung-organischer-stoffe-substratcharakterisierung-probenahme-stoffdatenerhebung-gaerversuche

  17. Lane DJ, Stackebrandt E (1991) and M. Goodfellow, New York, 115–175

  18. Sipos R, Székely AJ, Palatinszky M et al (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60:341–350. https://doi.org/10.1111/j.1574-6941.2007.00283.x

    Article  CAS  PubMed  Google Scholar 

  19. Després VR, Nowoisky JF, Klose M et al (2007) Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences 4(6):1127–1141. https://doi.org/10.5194/bg-4-1127-2007

    Article  ADS  Google Scholar 

  20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bergmann I, Mundt K, Sontag M et al (2010) Influence of DNA isolation on Q-PCR-based quantification of methanogenic Archaea in biogas fermenters. Syst Appl Microbiol 33:78–84. https://doi.org/10.1016/j.syapm.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  22. Adamiak J, Otlewska A, Tafer H et al (2018) First evaluation of the microbiome of built cultural heritage by using the Ion Torrent next generation sequencing platform. Int Biodeterior Biodegrad 131:11–18. https://doi.org/10.1016/j.ibiod.2017.01.040

    Article  CAS  Google Scholar 

  23. Marzorati M, Wittebolle L, Boon N et al (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x

    Article  CAS  PubMed  Google Scholar 

  24. Shannon CE (1963) In: Weaver W (ed) The mathematical theory of communication. University of Illinois Press, Urbana. ISBN:978-0-252-72548-7

    Google Scholar 

  25. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144. https://doi.org/10.1016/0022-5193(66)90013-0

    Article  ADS  Google Scholar 

  26. Jiménez J, Theuerl S, Bergmann I et al (2016) Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals. Water Sci Technol 74:824–835. https://doi.org/10.2166/wst.2016.170

    Article  CAS  PubMed  Google Scholar 

  27. Barret M, Gagnon N, Topp E et al (2013) Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity. Water Res 47:737–746. https://doi.org/10.1016/j.watres.2012.10.047

    Article  CAS  PubMed  Google Scholar 

  28. Mao C, Zhang T, Wang X et al (2017) Process performance and methane production optimizing of anaerobic co-digestion of swine manure and corn straw. Sci Rep 7:9379. https://doi.org/10.1038/s41598-017-09977-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiménez J, Cisneros-Ortiz ME, Guardia-Puebla Y et al (2014) Optimization of the thermophilic anaerobic co-digestion of pig manure, agriculture waste and inorganic additive through specific methanogenic activity. Water Sci Technol 69:2381–2388. https://doi.org/10.2166/wst.2014.109

    Article  CAS  PubMed  Google Scholar 

  30. Sun H, Ni P, Angelidaki I et al (2019) Exploring stability indicators for efficient monitoring of anaerobic digestion of pig manure under perturbations. Waste Manag 91:139–146. https://doi.org/10.1016/j.wasman.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  31. Xia T, Sun E, Tang W et al (2018) Structural and Thermal Stability Changes of Rice Straw fibers during anaerobic digestion. BioResources 13(2):3447–3461. https://jtatm.textiles.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3447_Xia_Structural_Thermal_Stability_Rice_Straw

    Article  CAS  Google Scholar 

  32. Kaur P, Kocher GS, Taggar MS (2019) Development of fungal consortium for the pretreatment of rice straw under optimized solid state and shake flask conditions. Environ Prog Sustain Energy 38:635–646. https://doi.org/10.1002/ep.12954

    Article  CAS  Google Scholar 

  33. Kong X, Du J, Ye X et al (2018) Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Bioresour Technol 263:33–39. https://doi.org/10.1016/j.biortech.2018.04.079

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Zheng H, Dong L (2020) Enhanced ethanol production from tree trimmings via microbial consortium pretreatment with selective degradation of lignin. Biomass Bioenergy 142:105787. https://doi.org/10.1016/j.biombioe.2020.105787

    Article  CAS  Google Scholar 

  35. Wu D, Li L, Zhao X et al (2019) Anaerobic digestion: a review on process monitoring. Renew Sustain Energy Rev 103:1–12. https://doi.org/10.1016/j.rser.2018.12.039

    Article  CAS  Google Scholar 

  36. Li L, He Q, Wei Y et al (2014) Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste. Bioresour Technol 171:491–494. https://doi.org/10.1016/j.biortech.2014.08.089

    Article  CAS  PubMed  Google Scholar 

  37. Jiménez DJ, Chaves-Moreno D, van Elsas JD (2015) Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw. Sci Rep 5:13845. https://doi.org/10.1038/srep13845

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Wang C, Dong D, Wang H et al (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9:22. https://doi.org/10.1186/s13068-016-0440-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Choi J, Kim E-S, Ahn Y (2017) Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. Bioresour Technol 227:133–141. https://doi.org/10.1016/j.biortech.2016.12.056

    Article  CAS  PubMed  Google Scholar 

  40. Reddington K, Eccles D, O’Grady J et al (2020) Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function. GigaScience 9(6). https://doi.org/10.1093/gigascience/giaa053

  41. Shi S, Qu Y, Ma Q et al (2015) Performance and microbial community dynamics in bioaugmented aerated filter reactor treating with coking wastewater. Bioresour Technol 190:159–166. https://doi.org/10.1016/j.biortech.2015.04.075

    Article  CAS  PubMed  Google Scholar 

  42. Ecem Öner B, Akyol Ç, Bozan M et al (2018) Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Bioresour Technol 249:620–625. https://doi.org/10.1016/j.biortech.2017.10.040

    Article  CAS  PubMed  Google Scholar 

  43. Lebiocka M, Montusiewicz A, Cydzik-Kwiatkowska A (2018) Effect of Bioaugmentation on Biogas yields and kinetics in anaerobic digestion of Sewage Sludge. Int J Environ Res Public Health 15:1717. https://doi.org/10.3390/ijerph15081717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wirth R, Kovács E, Maróti G et al (2012) Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels 5:41. https://doi.org/10.1186/1754-6834-5-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Vrieze J, Gildemyn S, Vilchez-Vargas R et al (2015) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199. https://doi.org/10.1007/s00253-014-6046-3

    Article  CAS  PubMed  Google Scholar 

  46. Padmasiri SI, Zhang J, Fitch M et al (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41:134–144. https://doi.org/10.1016/j.watres.2006.09.021

    Article  CAS  PubMed  Google Scholar 

  47. Supaphol S, Jenkins SN, Intomo P et al (2011) Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol 102:4021–4027. https://doi.org/10.1016/j.biortech.2010.11.124

    Article  CAS  PubMed  Google Scholar 

  48. Kim W, Lee S, Shin SG et al (2010) Methanogenic community shift in anaerobic batch digesters treating swine wastewater. Water Res 44:4900–4907. https://doi.org/10.1016/j.watres.2010.07.029

    Article  CAS  PubMed  Google Scholar 

  49. Guermazi-Toumi S, Chouari R, Sghir A (2019) Molecular analysis of methanogen populations and their interactions within anaerobic sludge digesters. Environ Technol 40:2864–2879. https://doi.org/10.1080/09593330.2018.1455747

    Article  CAS  PubMed  Google Scholar 

  50. Dyksma S, Jansen L, Gallert C (2020) Syntrophic acetate oxidation replaces acetoclastic methanogenesis during thermophilic digestion of biowaste. Microbiome 8:105. https://doi.org/10.1186/s40168-020-00862-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Canadian Bureau for International Education (Emerging Leaders in the Americas Program scholarship) with a research grant awarded to Annerys Carabeo-Pérez [grant number 509]. The authors acknowledge the cooperation between the Cuban and Canadian institutions that participated in the results of this research. The authors gratefully acknowledge the support provided by the Research, Development and Innovation Project “Bioaugmentation, biocontrol and biostimulation of two-stage anaerobic digestion to obtain hydrogen and methane”, with code PN211LH005-005. We also extend our thanks to all the individuals and organizations who contributed to this work in various ways.

Funding

This work was supported by the Canadian Bureau for International Education (Emerging Leaders in the Americas Program scholarship) with a research grant awarded to Annerys Carabeo-Pérez [grant number 509].

Author information

Authors and Affiliations

Authors

Contributions

Janet Jiménez, María Isabel Sánchez López and Gilda Guerra Rivera contributed to the study conception and design. Deborah Henderson provided the study materials, reagents, laboratory samples, instrumentation, computing resources, and other analysis tools. Material preparation, performing the experiments, data collection and analysis were performed by Annerys Carabeo-Pérez. The first draft of the manuscript was written by Annerys Carabeo-Pérez and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Annerys Carabeo-Pérez.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carabeo-Pérez, A., López, M.I.S., Rivera, G.G. et al. Rice Straw and Swine Manure Anaerobic co-digestion Enhancement Through Bioaugmentation: Effect on the Microbial Community. Bioenerg. Res. 17, 756–767 (2024). https://doi.org/10.1007/s12155-023-10676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10676-6

Keywords

Navigation