Skip to main content

Advertisement

Log in

Biogas Production from Organic Waste: Recent Progress and Perspectives

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) from organic waste has gained worldwide attention in reducing greenhouse gas emissions, lowering fossil fuel combustion, and facilitating a sustainable renewable energy supply. Biogas mainly consists of methane (CH4) (50–75%), carbon dioxide (CO2) (25–50%), hydrogen sulphides (H2S), hydrogen (H2), ammonia (NH3) (1–2%) and traces of other gases such as oxygen (O2) and nitrogen (N2). Methane can replace fossil fuels in various applications such as heat and power generation and the transportation sector. The degradation of organic waste through an AD process offers many advantages, such as the decrease of pathogens and prevention of odour release. The digestate from anaerobic fermentation is a valuable fertilizer, however, the amount of organic materials currently available for biogas production is still limited. New substrates, as well as more effective conversion technologies, are needed to grow this industry globally. This paper reviewed the latest trends and progress in biogas production technologies including potential feedstock. Recycling of waste has recently become an important topic and has been explored in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CO2 :

Carbon dioxide

CH4 :

Methane

CO2e:

Carbon dioxide-equivalents

AD:

Anaerobic digestion

GHG:

Greenhouse gases

NH3 :

Ammonia

H2S:

Sulphide

EJ/year:

Exajoule/year

TWh:

Terawatt hours

TS:

Total solids

VS:

Volatile solids

VFA:

Volatile fatty acids

BMP:

Biochemical methane potential

C/N:

The carbon-to-nitrogen ratio

DM:

Dry matter

ODM:

Organic dry matter

COD:

Chemical oxygen demand

HRT:

Hydraulic retention time

OLR:

Organic loading rate

References

  1. EEA: Climate Change, Impacts And Vulnerability in Europe 2016: An Indicator-Based Report, p. 188. EEA, Copenhagen (2017)

    Google Scholar 

  2. EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2015. Environmental Protection Agency (2017)

  3. CAIT: CAIT Historical—Explore Historic Greenhouse Gas Emissions. http://cait2.wri.org/historical (2014). Accessed 30 Oct 2018

  4. EPA: Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2030. Version: revised December. EPA, Washington, DC (2012)

  5. Abbasi, T., Tauseef, S., Abbasi, S.A.: Biogas Energy, vol. 2. Springer, New York (2011)

    Google Scholar 

  6. Wellinger, A., Murphy, J.D., Baxter, D.: The Biogas Handbook: Science, Production and Applications. Elsevier, Amsterdam (2013)

    Book  Google Scholar 

  7. ScienceDirect: ScienceDirect—Journals Search about “biogas” or “anaerobic digestion”. http://www.sciencedirect.com/science?_ob=MiamiSearchURL&_method=requestForm&_temp=search.tmpl&md5=be86fcf199953fc3d5e2cd09e0389370 (2017). Accessed 16 Aug 2017

  8. Onojo, O.J., Chukwudebe, G.A., Okafor, E.N.C., Ononiwu, G.C., Chukwuchekwa, N., Opara, R.O., Dike, D.O.: Estimation of the electric power potential of human waste using students hostel soak-away pits. Am. J. Eng. Res. 2(9), 198–203 (2013)

    Google Scholar 

  9. Buswell, A., Hatfield, W.: Anaerobic Fermentations. Bulletin 32 (1936)

  10. Murphy, J., Braun, R., Weiland, P., Wellinger, A.: Biogas from crop digestion. In: IEA Bioenergy Task, vol. 37, pp. 1–23 (2011)

  11. Mattioli, A., Boscaro, D., Dalla Venezia, F., Santacroce, F.C., Pezzuolo, A., Sartori, L., Bolzonella, D.: Biogas from residual grass: a territorial approach for sustainable bioenergy production. Waste Biomass Valoriz. 8(8), 2747–2756 (2017). https://doi.org/10.1007/s12649-017-0006-y

    Article  Google Scholar 

  12. EEA: Renewable Energy in Europe 2016—Recent Growth and Knock-on Effects. European Environmental Agency (2016)

  13. F.S.-U. Centre: Global Trends in Renewable Energy Investment 2016 (2016)

  14. Solarte-toro, J.C., Chacón-pérez, Y., Cardona-alzate, C.A.: Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electron. J. Biotechnol. 33, 52–62 (2018). https://doi.org/10.1016/j.ejbt.2018.03.005

    Article  Google Scholar 

  15. Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C.: Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change (2011)

  16. Offermann, R., Seidenberger, T., Thrän, D., Kaltschmitt, M., Zinoviev, S., Miertus, S.: Assessment of global bioenergy potentials. Mitig. Adapt. Strateg. Glob. change 16(1), 103–115 (2011). https://doi.org/10.1007/s11027-010-9247-9

    Article  Google Scholar 

  17. EEA: Renewable Energy in Europe 2017—Recent Growth and Knock-on Effects. European Environment Agency, Luxembourg (2017)

    Google Scholar 

  18. EBA: Biogas Report 2014. European Biogas Association (cited 2 July 2017). http://european-biogas.eu/wp-content/uploads/2015/01/EBA-Biogas-Report-2014.pdf (2015)

  19. ABC: How Many Operational Anaerobic Digesters are There in the U.S.? https://www.americanbiogascouncil.org/biogas_questions.asp. Accessed 15 Sep 2017

  20. EPA: AgSTAR Data and Trends. https://www.epa.gov/agstar/agstar-data-and-trends#adfacts (2015). Accessed 9 Aug 2017

  21. AgSTAR. https://www.epa.gov/agstar/agstar-data-and-trends#adfacts (2018). Accessed 30 Oct 2018

  22. Lambrecht, S.: The clean energy sector in Japan: an analysis on investment and industrial cooperation opportunities for EU SMEs. In: Comprehensive Energy Statistics and Annual Report on National Accounts, February 2014. EU-Japan Centre for Industrial Cooperation, Minerva. Cited in Agency for Natural Resources and Energy of Japan (2012)

  23. Ren21: Renewables 2017 Global Status Report. Renewable Energy Policy Network for the 21st Century, Paris (2017)

    Google Scholar 

  24. Ming, Z., Ximei, L., Na, L., Song, X.: Overall review of renewable energy tariff policy in China: evolution, implementation, problems and countermeasures. Renew. Sustain. Energy Rev. 25, 260–271 (2013). https://doi.org/10.1016/j.rser.2013.04.026

    Article  Google Scholar 

  25. MNER: Annual Report 2016/2017 in India. Ministry of New and Renewable Energy, Government of India (2017)

  26. Bagge, E., Persson, M., Johansson, K.E.: Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J. Appl. Microbiol. 109(5), 1549–1565 (2010). https://doi.org/10.1111/j.1365-2672.2010.04790.x

    Article  Google Scholar 

  27. EC: In: The European Parliament (ed) Regulation (EC) No. 1069/2009 of the European Parliament. Official Journal of the European Union (2009)

  28. EC: In: The European Parliament (ed) Regulation (EC) No. 1774/2002 of the European Parliament. Official Journal of the European Union (2002)

  29. EC: In: The European Parliament (ed) Directive 2008/98/EC of the European Parliament. Official Journal of the European Union (2008)

  30. Bangalore, M., Hochman, G., Zilberman, D.: Policy incentives and adoption of agricultural anaerobic digestion: a survey of Europe and the United States. Renew. Energy 97, 559–571 (2016). https://doi.org/10.1016/j.renene.2016.05.062

    Article  Google Scholar 

  31. Bochmann, G., Montgomery, L.F.: Storage and pre-treatment of substrates for biogas production. In: The Biogas Handbook. Woodhead Publishing Limited, Cambridge (2013)

    Chapter  Google Scholar 

  32. EPA: In: Environmental Protection Agency (ed) Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways Under Renewable Fuel Standard Program Documents, 40 CFR Part 80. Environmental Protection Agency (2014)

  33. Hua, Y., Oliphant, M., Hu, E.J.: Development of renewable energy in Australia and China: a comparison of policies and status. Renew. Energy 85, 1044–1051 (2016). https://doi.org/10.1016/j.renene.2015.07.060

    Article  Google Scholar 

  34. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., Janssen, R.: Biogas Handbook. University of Southern Denmark, Esbjerg. ISBN 978-87-992962-0-0, (2008)

  35. Holm-Nielsen, J.B., Oleskowicz-Popiel, P.: Process control in biogas plants. In: The Biogas Handbook. pp. 228–247. Elsevier (2013). https://doi.org/10.1533/9780857097415.2.228

    Chapter  Google Scholar 

  36. Goswami, R., Chattopadhyay, P., Shome, A., Banerjee, S.N., Chakraborty, A.K., Mathew, A.K., Chaudhury, S.: An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3 Biotech 6(1), 72 (2016). https://doi.org/10.1007/s13205-016-0395-9

    Article  Google Scholar 

  37. Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources: An Introduction. Wiley, Weinheim (2011)

    Google Scholar 

  38. Javad Asgari, M., Safavi, K., Mortazaeinezahad, F.: Landfill biogas production process (2011). https://doi.org/10.13140/2.1.1761.0886

  39. Eurostat: Agriculture, Forestry and Fishery Statistics, p. 224 (2017)

  40. Fermoso, F.G., Serrano, A., Alonso-Fariñas, B., Fernández-Bolaños, J., Borja, R., Rodríguez, G.: Valuable compounds extraction, anaerobic digestion and composting: a leading biorefinery approach for agricultural waste. J. Agric. Food Chem. (2018). https://doi.org/10.1021/acs.jafc.8b02667

    Article  Google Scholar 

  41. Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98(17), 3204–3212 (2007). https://doi.org/10.1016/j.biortech.2006.07.007

    Article  Google Scholar 

  42. Gissén, C., Prade, T., Kreuger, E., Nges, I.A., Rosenqvist, H., Svensson, S.-E., Lantz, M., Mattsson, J.E., Börjesson, P., Björnsson, L.: Comparing energy crops for biogas production—yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64, 199–210 (2014). https://doi.org/10.1016/j.biombioe.2014.03.061

    Article  Google Scholar 

  43. Lehtomäki, A.: Biogas production from energy crops and crop residues. University of Jyväskylä (2006)

  44. Lehtomäki, A., Huttunen, S., Lehtinen, T., Rintala, J.: Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour. Technol. 99(8), 3267–3278 (2008). https://doi.org/10.1016/j.biortech.2007.04.072

    Article  Google Scholar 

  45. Franco, R.T., Buffière, P., Bayard, R.: Effects of storage conditions, total solids content and silage additives on fermentation profiles and methane preservation of cattle manure before anaerobic digestion. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0255-4

    Article  Google Scholar 

  46. Rodriguez, C., Alaswad, A., Benyounis, K.Y., Olabi, A.G.: Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 68, 1193–1204 (2017). https://doi.org/10.1016/j.rser.2016.02.022

    Article  Google Scholar 

  47. Frigon, J.-C., Mehta, P., Guiot, S.R.: Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 36, 1–11 (2012). https://doi.org/10.1016/j.biombioe.2011.02.013

    Article  Google Scholar 

  48. Solé-Bundó, M., Eskicioglu, C., Garfí, M., Carrère, H., Ferrer, I.: Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour. Technol. 237, 89–98 (2017). https://doi.org/10.1016/j.biortech.2017.03.151

    Article  Google Scholar 

  49. Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E.: Optimization of pretreatment, process performance, mass and energy balance in the anaerobic digestion of Arachis hypogaea (Peanut) hull. Energy Convers. Manag. 139, 260–275 (2017). https://doi.org/10.1016/j.enconman.2017.02.063

    Article  Google Scholar 

  50. Ji, C., Kong, C.-X., Mei, Z.-L., Li, J.: A review of the anaerobic digestion of fruit and vegetable waste. Appl. Biochem. Biotechnol. 183(3), 906–922 (2017). https://doi.org/10.1007/s12010-017-2472-x

    Article  Google Scholar 

  51. Patinvoh, R.J., Lundin, M., Taherzadeh, M.J., Horváth, I.S.: Dry anaerobic co-digestion of citrus wastes with keratin and lignocellulosic wastes: batch and continuous processes. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0447-y

    Article  Google Scholar 

  52. Miezah, K., Obiri-Danso, K., Kádár, Z., Heiske, S., Fei-Baffoe, B., Mensah, M., Meyer, A.S.: Municipal solid waste management in a low income economy through biogas and bioethanol production. Waste Biomass Valoriz. 8(1), 115–127 (2017). https://doi.org/10.1007/s12649-016-9566-5

    Article  Google Scholar 

  53. Hom-Diaz, A., Baldi, F., Blánquez, P., Lombardi, L., Martín-González, L., Vicent, T.: Exhausted fungal biomass as a feedstock for increasing methane production during the anaerobic digestion of organic wastes. Waste Biomass Valoriz. 7(2), 307–315 (2016). https://doi.org/10.1007/s12649-015-9450-8

    Article  Google Scholar 

  54. Chen, G., Zheng, Z., Yang, S., Fang, C., Zou, X., Zhang, J.: Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process. Technol. 91(11), 1416–1421 (2010). https://doi.org/10.1016/j.fuproc.2010.05.015

    Article  Google Scholar 

  55. Dandikas, V., Heuwinkel, H., Lichti, F., Drewes, J.E., Koch, K.: Correlation between biogas yield and chemical composition of grassland plant species. Energy Fuels 29(11), 7221–7229 (2015). https://doi.org/10.1021/acs.energyfuels.5b01257

    Article  Google Scholar 

  56. Nges, I.A., Li, C., Wang, B., Xiao, L., Yi, Z., Liu, J.: Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius. Fuel 166, 29–35 (2016). https://doi.org/10.1016/j.fuel.2015.10.108

    Article  Google Scholar 

  57. Seppälä, M., Pyykkönen, V., Väisänen, A., Rintala, J.: Biomethane production from maize and liquid cow manure—effect of share of maize, post-methanation potential and digestate characteristics. Fuel 107, 209–216 (2013). https://doi.org/10.1016/j.fuel.2012.12.069

    Article  Google Scholar 

  58. Thygesen, O., Sommer, S.G., Shin, S.G., Triolo, J.M.: Residual biochemical methane potential (BMP) of concentrated digestate from full-scale biogas plants. Fuel 132, 44–46 (2014). https://doi.org/10.1016/j.fuel.2014.04.062

    Article  Google Scholar 

  59. Hoornweg, D., Bhada-Tata, P.: What a Waste: A Global Review of Solid Waste Management, pp. 1–116. World Bank, Washington, DC (2012)

    Google Scholar 

  60. Vergara, S.E., Tchobanoglous, G.: Municipal solid waste and the environment: a global perspective. Annu. Rev. Environ. Resour. 37, 277–309 (2012). https://doi.org/10.1146/annurev-environ-050511-122532

    Article  Google Scholar 

  61. Albanna, M.: Anaerobic digestion of the organic fraction of municipal solid waste. In: Management of Microbial Resources in the Environment, pp. 313–340. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  62. Cavinato, C., Bolzonella, D., Pavan, P., Fatone, F., Cecchi, F.: Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew. Energy 55, 260–265 (2013). https://doi.org/10.1016/j.renene.2012.12.044

    Article  Google Scholar 

  63. Ara, E., Sartaj, M., Kennedy, K.: Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate. Waste Manag. Res. 33(6), 578–587 (2015). https://doi.org/10.1177/0734242X15584844

    Article  Google Scholar 

  64. Silvestre, G., Bonmatí, A., Fernández, B.: Optimisation of sewage sludge anaerobic digestion through co-digestion with OFMSW: effect of collection system and particle size. Waste Manag. 43, 137–143 (2015). https://doi.org/10.1016/j.wasman.2015.06.029

    Article  Google Scholar 

  65. Borowski, S.: Temperature-phased anaerobic digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge. Int. Biodeterior. Biodegrad. 105, 106–113 (2015). https://doi.org/10.1016/j.ibiod.2015.08.022

    Article  Google Scholar 

  66. Zahedi, S., Solera, R., Micolucci, F., Cavinato, C., Bolzonella, D.: Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste Manag. 49, 40–46 (2016). https://doi.org/10.1016/j.wasman.2016.01.016

    Article  Google Scholar 

  67. Blake, L.I., Halim, F.A., Gray, C., Mair, R., Manning, D.A.C., Sallis, P., Hutchinson, H., Gray, N.D.: Evaluating an anaerobic digestion (AD) feedstock derived from a novel non-source segregated municipal solid waste (MSW) product. Waste Manag. 59, 149–159 (2017). https://doi.org/10.1016/j.wasman.2016.10.031

    Article  Google Scholar 

  68. Rodríguez, A., Ángel, J., Rivero, E., Acevedo, P., Santis, A., Cabeza, I., Acosta, M., Hernández, M.: Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste and cocoa industry residues in Colombia. Chem. Eng. Trans. 57, 55–60 (2017). https://doi.org/10.3303/CET1757010

    Article  Google Scholar 

  69. Tsapekos, P., Kougias, P.G., Kuthiala, S., Angelidaki, I.: Co-digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 159(December 2017), 1–6 (2018). https://doi.org/10.1016/j.enconman.2018.01.002

    Article  Google Scholar 

  70. Pavi, S., Kramer, L.E., Gomes, L.P., Miranda, L.A.S.: Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour. Technol. 228, 362–367 (2017). https://doi.org/10.1016/j.biortech.2017.01.003

    Article  Google Scholar 

  71. Guven, H., Akca, M.S., Iren, E., Keles, F., Ozturk, I., Altinbas, M.: Co-digestion performance of organic fraction of municipal solid waste with leachate: preliminary studies. Waste Manag. 71, 775–784 (2018). https://doi.org/10.1016/j.wasman.2017.04.039

    Article  Google Scholar 

  72. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  73. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014). https://doi.org/10.1016/j.rser.2014.05.038

    Article  Google Scholar 

  74. Wang, Q., Peng, L., Su, H.: The effect of a buffer function on the semi-continuous anaerobic digestion. Bioresour. Technol. 139, 43–49 (2013). https://doi.org/10.1016/j.biortech.2013.04.006

    Article  Google Scholar 

  75. Dhar, H., Kumar, P., Kumar, S., Mukherjee, S., Vaidya, A.N.: Effect of organic loading rate during anaerobic digestion of municipal solid waste. Bioresour. Technol. 217, 56–61 (2016). https://doi.org/10.1016/j.biortech.2015.12.004

    Article  Google Scholar 

  76. Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., Zeng, G., Yang, Q.: Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag. 67, 308–314 (2017). https://doi.org/10.1016/j.wasman.2017.05.016

    Article  Google Scholar 

  77. Fisgativa, H., Tremier, A., Dabert, P.: Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manag. 50, 264–274 (2016). https://doi.org/10.1016/j.wasman.2016.01.041

    Article  Google Scholar 

  78. Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J.M., Flotats, X., de Mendonça, Costa, M.S.S.: Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag. 71, 618–625 (2018). https://doi.org/10.1016/j.wasman.2017.05.030

    Article  Google Scholar 

  79. Gil, A., Toledo, M., Siles, J.A., Martín, M.A.: Multivariate analysis and biodegradability test to evaluate different organic wastes for biological treatments: anaerobic co-digestion and co-composting. Waste Manag. 78, 819–828 (2018). https://doi.org/10.1016/j.wasman.2018.06.052

    Article  Google Scholar 

  80. Siles, J.A., Vargas, F., Gutiérrez, M.C., Chica, A.F., Martín, M.A.: Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresour. Technol. 211, 173–182 (2016). https://doi.org/10.1016/j.biortech.2016.03.056

    Article  Google Scholar 

  81. Dahunsi, S.O., Oranusi, S., Owolabi, J.B., Efeovbokhan, V.E.: Comparative biogas generation from fruit peels of fluted pumpkin (Telfairia occidentalis) and its optimization. Bioresour. Technol. 221, 517–525 (2016). https://doi.org/10.1016/j.biortech.2016.09.065

    Article  Google Scholar 

  82. Serrano, A., Siles, J.A., Gutiérrez, M.C., Martín, M.: Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate. J. Clean. Prod. 90, 25–33 (2015). https://doi.org/10.1016/j.jclepro.2014.11.039

    Article  Google Scholar 

  83. Pereira, G.S., Cipriani, M., Wisbeck, E., Souza, O., Strapazzon, J.O., Gern, R.M.M.: Onion juice waste for production of Pleurotus sajor-caju and pectinases. Food Bioprod. Process. 106, 11–18 (2017). https://doi.org/10.1016/j.fbp.2017.08.006

    Article  Google Scholar 

  84. Jin, Y., Li, Y., Li, J.: Influence of thermal pretreatment on physical and chemical properties of kitchen waste and the efficiency of anaerobic digestion. J. Environ. Manag. 180, 291–300 (2016). https://doi.org/10.1016/j.jenvman.2016.05.047

    Article  Google Scholar 

  85. Ali, M., Sreekrishnan, T.: Aquatic toxicity from pulp and paper mill effluents: a review. Adv. Environ. Res. 5(2), 175–196 (2001). https://doi.org/10.1016/S1093-0191(00)00055-1

    Article  Google Scholar 

  86. Veluchamy, C., Kalamdhad, A.S.: A mass diffusion model on the effect of moisture content for solid-state anaerobic digestion. J. Clean. Prod. 162, 371–379 (2017). https://doi.org/10.1016/j.jclepro.2017.06.099

    Article  Google Scholar 

  87. Veluchamy, C., Kalamdhad, A.S.: Biochemical methane potential test for pulp and paper mill sludge with different food/microorganisms ratios and its kinetics. Int. Biodeterior. Biodegrad. 117, 197–204 (2017). https://doi.org/10.1016/j.ibiod.2017.01.005

    Article  Google Scholar 

  88. Meyer, T., Edwards, E.A.: Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 65, 321–349 (2014). https://doi.org/10.1016/j.watres.2014.07.022

    Article  Google Scholar 

  89. Tao, R., Lakaniemi, A.-M., Rintala, J.A.: Cultivation of Scenedesmus acuminatus in different liquid digestates from anaerobic digestion of pulp and paper industry biosludge. Bioresour. Technol.. 245, 706–713 (2017). https://doi.org/10.1016/j.biortech.2017.08.218

    Article  Google Scholar 

  90. Lin, Y., Liang, J., Zeng, C., Wang, D., Lin, H.: Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols. Renew. Energy 108, 108–115 (2017). https://doi.org/10.1016/j.renene.2017.02.049

    Article  Google Scholar 

  91. Kinnunen, V., Ylä-Outinen, A., Rintala, J.: Mesophilic anaerobic digestion of pulp and paper industry biosludge—long-term reactor performance and effects of thermal pretreatment. Water Res. 87, 105–111 (2015). https://doi.org/10.1016/j.watres.2015.08.053

    Article  Google Scholar 

  92. Chatterjee, P., Lahtinen, L., Kokko, M., Rintala, J.: Remediation of sedimented fiber originating from pulp and paper industry: laboratory scale anaerobic reactor studies and ideas of scaling up. Water Res. 143, 209–217 (2018). https://doi.org/10.1016/j.watres.2018.06.054

    Article  Google Scholar 

  93. Jeihanipour, A., Karimi, K., Niklasson, C., Taherzadeh, M.J.: A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag. 30(12), 2504–2509 (2010). https://doi.org/10.1016/j.wasman.2010.06.026

    Article  Google Scholar 

  94. Chan, Y.J., Chong, M.F., Law, C.L., Hassell, D.: A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155(1), 1–18 (2009). https://doi.org/10.1016/j.cej.2009.06.041

    Article  Google Scholar 

  95. Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., Taherzadeh, M.J.: High-rate biogas production from waste textiles using a two-stage process. Renew. Energy 52, 128–135 (2013). https://doi.org/10.1016/j.renene.2012.10.042

    Article  Google Scholar 

  96. Apollo, S., Onyango, M.S., Ochieng, A.: Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite. Chem. Eng. J. 245, 241–247 (2014). https://doi.org/10.1016/j.cej.2014.02.027

    Article  Google Scholar 

  97. Lin, C.-Y., Nguyen, M.-L.T., Lay, C.-H.: Starch-containing textile wastewater treatment for biogas and microalgae biomass production. J. Clean. Prod. 168, 331–337 (2017). https://doi.org/10.1016/j.jclepro.2017.09.036

    Article  Google Scholar 

  98. Haak, L., Roy, R., Pagilla, K.: Toxicity and biogas production potential of refinery waste sludge for anaerobic digestion. Chemosphere 144, 1170–1176 (2016). https://doi.org/10.1016/j.chemosphere.2015.09.099

    Article  Google Scholar 

  99. Choromański, P., Karwowska, E., Łebkowska, M.: The influence of petroleum products on the methane fermentation process. J. Hazard. Mater. 301, 327–331 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.011

    Article  Google Scholar 

  100. Wang, Y., Wang, Q., Li, M., Yang, Y., He, W., Yan, G., Guo, S.: An alternative anaerobic treatment process for treatment of heavy oil refinery wastewater containing polar organics. Biochem. Eng. J. 105, 44–51 (2016). https://doi.org/10.1016/j.bej.2015.08.012

    Article  Google Scholar 

  101. Mehryar, E., Ding, W.M., Hemmat, A., Hassan, M., Bi, J.H., Huang, H.Y., Kafashan, J.: Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors. Agron. Res. 15(5), 1983–1996 (2017). https://doi.org/10.15159/AR.17.072

    Article  Google Scholar 

  102. Zhang, W., Heaven, S., Banks, C.J.: Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polym. Degrad. Stab. 147, 76–88 (2018). https://doi.org/10.1016/j.polymdegradstab.2017.11.005

    Article  Google Scholar 

  103. Drosg, B., Wirthensohn, T., Konrad, G., Hornbachner, D., Resch, C., Wäger, F., Loderer, C., Waltenberger, R., Kirchmayr, R., Braun, R.: Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production. Water Sci. Technol. 58(7), 1483–1489 (2008). https://doi.org/10.2166/wst.2008.515

    Article  Google Scholar 

  104. Cassidy, D., Hirl, P., Belia, E.: Methane production from the soluble fraction of distillers’ dried grains with solubles in anaerobic sequencing batch reactors. Water Environ. Res. 80(6), 570–575 (2008). https://doi.org/10.2175/106143007X221517

    Article  Google Scholar 

  105. Rosentrater, K.A., Hall, H.R., Hansen, C.L.: Anaerobic digestion potential for ethanol processing residues. In: 2006 ASAE Annual Meeting 2006, p. 1. American Society of Agricultural and Biological Engineers

  106. López, J.ÁS., de los Santos, M.Á.M., Pérez, A.F.C., Martín, A.M.: Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresour. Technol. 100(23), 5609–5615 (2009). https://doi.org/10.1016/j.biortech.2009.06.017

    Article  Google Scholar 

  107. Zahedi, S., Solera, R., García-Morales, J., Ennouri, H., Sales, D.: Evaluation of the effect of glycerol supplementation on the anaerobic digestion of real municipal solid waste in batch mode. Fuel 193, 15–21 (2017). https://doi.org/10.1016/j.fuel.2016.12.024

    Article  Google Scholar 

  108. Siles, J., Martín, M., Chica, A., Martín, A.: Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101(16), 6315–6321 (2010). https://doi.org/10.1016/j.biortech.2010.03.042

    Article  Google Scholar 

  109. Khuntia, H.K., Chanakya, H.N., Siddiqha, A., Thomas, C., Mukherjee, N., Janardhana, N.: Anaerobic digestion of the inedible oil biodiesel residues for value addition. Sustain. Energy Technol. Assess. 22, 9–17 (2017). https://doi.org/10.1016/j.seta.2017.05.006

    Article  Google Scholar 

  110. Jabłoński, S.J., Biernacki, P., Steinigeweg, S., Łukaszewicz, M.: Continuous mesophilic anaerobic digestion of manure and rape oilcake—experimental and modelling study. Waste Manag. 35, 105–110 (2015). https://doi.org/10.1016/j.wasman.201

    Article  Google Scholar 

  111. Primandari, S.R.P., Islam, A.K.M.A., Yaakob, Z., Chakrabarty, S.: Jatropha curcas L. biomass waste and its utilization. In: Advances in Biofuels and Bioenergy. IntechOpen, London (2018)

    Google Scholar 

  112. Monlau, F., Latrille, E., Costa, D., Steyer, A.C., Carrère, J.-P.: H.: Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl. Energy 102, 1105–1113 (2013). https://doi.org/10.1016/j.apenergy.2012.06.042

    Article  Google Scholar 

  113. Anuar, N.K., Man, H.C., Idrus, S., Daud, N.N.N.: Biochemical Methane Potential (BMP) from Anaerobic Co-digestion of Sewage Sludge and Decanter Cake, p. 012027. IOP Publishing, Bristol (2018)

    Google Scholar 

  114. Bateni, H., Bateni, F., Karimi, K.: Effects of oil extraction on ethanol and biogas production from Eruca sativa seed cake. Waste Biomass Valoriz. 8(6), 1897–1905 (2017). https://doi.org/10.1007/s12649-016-9731-x

    Article  Google Scholar 

  115. Augusto Pazuch, F., Siqueira, J., Friedrich, L., Lenz, A.M., Camargo Nogueira, C.E., Melegari de Souza, S.N.: Co-digestion of crude glycerin associated with cattle manure in biogas production in the State of Paraná, Brazil. Acta Sci. Technol. (2017). https://doi.org/10.4025/actascitechnol.v39i2.29167

    Article  Google Scholar 

  116. Aguilar-Aguilar, F.A., Nelson, D.L., Pantoja, L.d.A., Santos, A.S.: Study of anaerobic co-digestion of crude glycerol and swine manure for the production of biogas. Rev. Virtual Quim. 9(6), 2383–2403 (2017)

    Article  Google Scholar 

  117. Queiroz, L.M., Nascimento, I.O.C., de Melo, S.A.B.V., Kalid, R.A.: Aerobic, anaerobic treatability and biogas production potential of a wastewater from a biodiesel industry. Waste Biomass Valorization. 7(4), 691–702 (2016). https://doi.org/10.1007/s12649-016-9536-y

    Article  Google Scholar 

  118. Murphy, J.D., Drosg, B., Allen, E., Jerney, J., Xia, A., Herrmann, C.: A perspective on algal biogas. In: IEA Bioenergy. pp. 1–38 (2015)

  119. Wellinger, A.: Algal biomass—does it save the world. In: Short Reflections. IEA Bioenergy Task, vol. 37, p. 13 (2009)

  120. Fasaei, F., Bitter, J.H., Slegers, P.M., van Boxtel, A.J.B.: Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31, 347–362 (2018). https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  121. Yue, Z., Ma, D., Wang, J., Tan, J., Peng, S.-C., Chen, T.-H.: Goethite promoted anaerobic digestion of algal biomass in continuous stirring-tank reactors. Fuel 159, 883–886 (2015). https://doi.org/10.1016/j.fuel.2015.07.059

    Article  Google Scholar 

  122. Uggetti, E., Passos, F., Solé, M., Garfí, M., Ferrer, I.: Recent achievements in the production of biogas from microalgae. Waste Biomass Valoriz. 8(1), 129–139 (2017)

    Article  Google Scholar 

  123. Mahdy, A., Fotidis, I.A., Mancini, E., Ballesteros, M., González-Fernández, C., Angelidaki, I.: Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour. Technol. 225, 272–278 (2017). https://doi.org/10.1016/j.biortech.2016.11.086

    Article  Google Scholar 

  124. Thorin, E., Olsson, J., Schwede, S., Nehrenheim, E.: Co-digestion of sewage sludge and microalgae—biogas production investigations. Appl. Energy (2017). https://doi.org/10.1016/j.apenergy.2017.08.085

    Article  Google Scholar 

  125. Wang, M., Park, C.: Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 80, 30–37 (2015). https://doi.org/10.1016/j.biombioe.2015.04.028

    Article  Google Scholar 

  126. Caporgno, M.P., Trobajo, R., Caiola, N., Ibáñez, C., Fabregat, A., Bengoa, C.: Biogas production from sewage sludge and microalgae co-digestion under mesophilic and thermophilic conditions. Renew. Energy 75, 374–380 (2015). https://doi.org/10.1016/j.renene.2014.10.019

    Article  Google Scholar 

  127. Córdova, O., Ruiz-Filippi, G., Fermoso, F.G., Chamy, R.: Influence of growth kinetics of microalgal cultures on biogas production. Renew. Energy 122, 455–459 (2018). https://doi.org/10.1016/j.renene.2018.01.125

    Article  Google Scholar 

  128. Barua, V.B., Kalamdhad, A.S.: Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio. Fuel 217, 91–97 (2018). https://doi.org/10.1016/j.fuel.2017.12.074

    Article  Google Scholar 

  129. Elbeshbishy, E., Dhar, B.R., Nakhla, G., Lee, H.-S.: A critical review on inhibition of dark biohydrogen fermentation. Renew. Sustain. Energy Rev. 79, 656–668 (2017). https://doi.org/10.1016/j.rser.2017.05.075

    Article  Google Scholar 

  130. Liebetrau, J., Pfeiffer, D., Thrän, D.: Collection of methods for biogas: methods to determine parameters for analysis purposes and parameters that describe processes in the biogas sector. In: Biomass Energy Use, vol. 7. Deutsches BiomasseForschungszentrum (DBFZ), Leipzig (2016)

  131. Bischofsberger, W., Dichtl, N., Rosenwinkel, K., Seyfried, C.: Anaerobtechnik. Aufl. Springer Berlin Heidelberg, Berlin (2005)

    Book  Google Scholar 

  132. Abbasi, T., Tauseef, S., Abbasi, S.: Anaerobic digestion for global warming control and energy generation—an overview. Renew. Sustain. Energy Rev. 16(5), 3228–3242 (2012). https://doi.org/10.1016/j.rser.2012.02.046

    Article  Google Scholar 

  133. Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F.: Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Bioresour. Technol. 209, 369–379 (2016). https://doi.org/10.1016/j.biortech.2016.03.028

    Article  Google Scholar 

  134. Cai, Y., Hua, B., Gao, L., Hu, Y., Yuan, X., Cui, Z., Zhu, W., Wang, X.: Effects of adding trace elements on rice straw anaerobic mono-digestion: focus on changes in microbial communities using high-throughput sequencing. Bioresour. Technol. 239, 454–463 (2017). https://doi.org/10.1016/j.biortech.2017.04.071

    Article  Google Scholar 

  135. Voelklein, M.A., O’Shea, R., Jacob, A., Murphy, J.D.: Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy 121, 185–192 (2017). https://doi.org/10.1016/j.energy.2017.01.009

    Article  Google Scholar 

  136. Li, L., Li, Y., Sun, Y., Yuan, Z., Lv, P., Kang, X., Zhang, Y., Yang, G.: Influence of the feedstock ratio and organic loading rate on the co-digestion performance of Pennisetum hybrid and cow manure. Energy Fuels 32(4), 5171–5180 (2018). https://doi.org/10.1021/acs.energyfuels.8b00015

    Article  Google Scholar 

  137. Wijesinghe, D.T.N., Dassanayake, K.B., Sommer, S.G., Scales, P., Chen, D.: Biogas improvement by adding Australian zeolite during the anaerobic digestion of C:N ratio adjusted swine manure. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-018-0210-4

    Article  Google Scholar 

  138. Braun, R.: Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Improvement of Crop Plants for Industrial End Uses, pp. 335–416. Springer, Dordrecht (2007)

  139. Raposo, F., Banks, C., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41(6), 1444–1450 (2006). https://doi.org/10.1016/j.procbio.2006.01.012

    Article  Google Scholar 

  140. Zhou, Y., Zhang, Z., Nakamoto, T., Li, Y., Yang, Y., Utsumi, M., Sugiura, N.: Influence of substrate-to-inoculum ratio on the batch anaerobic digestion of bean curd refuse-okara under mesophilic conditions. Biomass Bioenergy 35(7), 3251–3256 (2011). https://doi.org/10.1016/j.biombioe.2011.04.002

    Article  Google Scholar 

  141. Raposo, F., Banks, C.J., Siegert, I., Heaven, S., Borja, R.: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41(6), 1444–1450 (2006). https://doi.org/10.1016/j.procbio.2006.01.012

    Article  Google Scholar 

  142. Córdoba, V., Fernández, M., Santalla, E.: The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-0039-6

    Article  Google Scholar 

  143. Nayono, S.E.: Anaerobic Digestion of Organic Solid Waste for Energy Production, vol. 46. KIT Scientific Publishing, Karlsruhe (2010)

    Google Scholar 

  144. Ohimain, E.I., Izah, S.C.: A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew. Sustain. Energy Rev. 70, 242–253 (2017). https://doi.org/10.1016/j.rser.2016.11.221

    Article  Google Scholar 

  145. Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I.: Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Bioresour. Technol. 99(11), 4919–4928 (2008). https://doi.org/10.1016/j.biortech.2007.09.015

    Article  Google Scholar 

  146. McMahon, K.D., Stroot, P.G., Mackie, R.I., Raskin, L.: Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions—II: microbial population dynamics. Water Res. 35(7), 1817–1827 (2001). https://doi.org/10.1016/S0043-1354(00)00438-3

    Article  Google Scholar 

  147. Dapelo, D., Bridgeman, J.: Euler–Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment. Adv. Eng. Softw. (2017). https://doi.org/10.1016/j.advengsoft.2017.08.009

    Article  Google Scholar 

  148. Zhang, Y., Yu, G., Yu, L., Siddhu, M.A.H., Gao, M., Abdeltawab, A.A., Al-Deyab, S.S., Chen, X.: Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion. Bioresour. Technol. 203, 166–172 (2016). https://doi.org/10.1016/j.biortech.2015.12.023

    Article  Google Scholar 

  149. EPA: Design Information Report: Anaerobic Digester Mixing Systems, vol. 59, pp. 162–170 (1987)

  150. Najafpour, G.D., Zinatizadeh, A.A.L., Mohamed, A.R., Hasnain Isa, M., Nasrollahzadeh, H.: High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor. Process Biochem. 41(2), 370–379 (2006). https://doi.org/10.1016/j.procbio.2005.06.031

    Article  Google Scholar 

  151. Junicke, H., van Loosdrecht, M.C.M., Kleerebezem, R.: Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities. Appl. Microbiol. Biotechnol. 100(2), 915–925 (2016). https://doi.org/10.1007/s00253-015-6971-9

    Article  Google Scholar 

  152. Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W.-H., Dolfing, J., Li, D., Zhang, Y., Zeng, H., Chu, W., Lee, P.-H.: A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour. Technol. 247(July 2017), 1095–1106 (2018). https://doi.org/10.1016/j.biortech.2017.09.103

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge The Unit of Scientific Research Project Coordination (Bilimsel Araştırma Projeleri Koordinatörlüğü, BAP) of Erciyes Univerity, Kayseri, Turkey for the financial support under the University Project: FOA-2018-8183 (Priority Research Project) (Öncelikli Araştırma Proje). This work was also supported in part by grants from the Korea Ministry of Environment, as a “Global Top Project” (Project No.: 2016002210003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalakrishnan Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atelge, M.R., Krisa, D., Kumar, G. et al. Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valor 11, 1019–1040 (2020). https://doi.org/10.1007/s12649-018-00546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-00546-0

Keywords

Navigation