Skip to main content

Advertisement

Log in

Glia Signaling and Brain Microenvironment in Migraine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Migraine is a complicated neurological disorder affecting 6% of men and 18% of women worldwide. Various mechanisms, including neuroinflammation, oxidative stress, altered mitochondrial function, neurotransmitter disturbances, cortical hyperexcitability, genetic factors, and endocrine system problems, are responsible for migraine. However, these mechanisms have not completely delineated the pathophysiology behind migraine, and they should be further studied. The brain microenvironment comprises neurons, glial cells, and vascular structures with complex interactions. Disruption of the brain microenvironment is the main culprit behind various neurological disorders. Neuron-glia crosstalk contributes to hyperalgesia in migraine. In the brain, microenvironment and related peripheral regulatory circuits, microglia, astrocytes, and satellite cells are necessary for proper function. These are the most important cells that could induce migraine headaches by disturbing the balance of the neurotransmitters in the nervous system. Neuroinflammation and oxidative stress are the prominent reactions glial cells drive during migraine. Understanding the role of cellular and molecular components of the brain microenvironment on the major neurotransmitters engaged in migraine pathophysiology facilitates the development of new therapeutic approaches with higher effectiveness for migraine headaches. Investigating the role of the brain microenvironment and neuroinflammation in migraine may help decipher its pathophysiology and provide an opportunity to develop novel therapeutic approaches for its management. This review aims to discuss the neuron-glia interactions in the brain microenvironment during migraine and their potential role as a therapeutic target for the treatment of migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CNS:

Central nervous system

BBB:

Blood-brain barrier

IgE:

Immunoglobulin

TNF-α:

Tumor necrosis factor-α

IL:

Interleukin

CGRP:

Calcitonin gene–related peptide

NMDA:

N-methyl-D-aspartate

SGC:

Satellite glial cells

PICs:

Proinflammatory cytokines

TNC:

Trigeminal nucleus caudalis

PAG:

Periaqueductal gray

LC:

Locus coeruleus

RN:

Raphe nuclei

PI3K:

Phosphatidylinositol-3-kinase

CSD:

Cortical spreading depolarization

TRPA1:

Transient receptor potential ankyrin 1

NO:

Nitric oxide

TG:

Trigeminal ganglion

FHM:

Familial hemiplegic migraine

DRG:

Dorsal root ganglion

TRP:

Transient receptor potential

CRLR/CGRPR1:

Calcitonin receptor-like receptor/CGRP receptor 1

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor-β

BDNF:

Brain-derived neurotrophic factor

NLRP3:

NLR family pyrin domain containing 3

TLR:

Toll-like receptor

NF-Κb:

Nuclear factor kappa B

STAT:

Signal transducer and activator of transcription

IFN:

Interferon

iNOS:

Inducible nitric oxide synthase

P2XR:

P2X purinergic receptor

ATP:

Adenosine triphosphate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

GABAA:

Gamma-aminobutyric acid A

GLT1:

Glutamate transporter 1

GluR1:

Glutamate receptor 1

Kir:

Inwardly rectifying potassium channels

EAAT2:

Excitatory amino acid transporters 2

EPK:

Eukaryotic protein kinase

RAMP:

Receptor activity modifying proteins

CASK:

Calmodulin-dependent serine protein kinase

GFAP:

Glial fibrillary acidic protein

Iba1:

Ionized calcium-binding adaptor molecule 1

SNAP-25:

Synaptosomal-associated protein, 25 kDa

HK-1:

Hemokinin-1

pERK:

Extracellular signal-regulated kinase

PRR:

Pattern recognition receptors

JAK:

Janus kinase

CCL:

Chemokine ligand

Α7 nAChR:

α7 Nicotinic acetylcholine receptor

P-JNK:

Phosphorylated c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

SFRP1:

Secreted frizzled‐related protein 1

PACAP:

Pituitary adenylate cyclase–activating polypeptide

VIP:

Vasoactive intestinal peptide

Th:

T helper cells

PGI2:

Prostaglandin I2

GABA:

Gamma-aminobutyric acid

TRPV1:

Transient receptor potential cation channel subfamily V member 1

PAC1:

PACAP type I

AEG-1:

Astrocyte elevated gene-1

5-HT:

5-Hydroxytryptamine

nVNS:

Non-invasive vagus nerve stimulation

CADASIL:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

HERNS:

Hereditary endotheliopathy with retinopathy, nephropathy, and stroke

GDNF:

Glial cell line–derived neurotrophic factor

GFRα3:

Growth family receptor α3

NSAIDs:

Nonsteroidal anti-inflammatory drugs

FDA:

US Food and Drug Administration

References

  1. Goadsby PJ (2012) Pathophysiology of migraine. Ann Indian Acad Neurol 15(Suppl 1):S15–S22

    Article  PubMed  PubMed Central  Google Scholar 

  2. Puledda F, Messina R, Goadsby PJ (2017) An update on migraine: current understanding and future directions. J Neurol 264(9):2031–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Djalali M, Djalali M, Abdolahi M, Mohammadi H, Heidari H, Hosseini S et al (2020) The effect of nano-curcumin supplementation on pentraxin 3 gene expression and serum level in migraine patients. Rep Biochem Mol Biol 9(1):1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Razeghi Jahromi S, Ghorbani Z, Martelletti P, Lampl C, Togha M (2019) On behalf of the School of Advanced Studies of the European Headache F. Association of diet and headache. J Headache Pain 20(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T et al (2021) Experimental and clinical evidence of the effectiveness of riboflavin on migraines. Nutrients 13(8):2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D (2019) Potential protective mechanisms of ketone bodies in migraine prevention. Nutrients 11(4)

  7. Pescador Ruschel MA DJO. Migraine headache (2022) In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan-[Updated 2022 Jul 6]

  8. Hanslik KL, Marino KM, Ulland TK (2021) Modulation of glial function in health, aging, and neurodegenerative disease. Front Cell Neurosci 15:718324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malchow RP, Tchernookova BK, Choi J-iV, Smith PJS, Kramer RH, Kreitzer MA (2021) Review and hypothesis: a potential common link between glial cells, calcium changes, modulation of synaptic transmission, spreading depression, migraine, and epilepsy—H+. Front Cell Neurosci 15

  10. Lebedeva A, Plata A, Nosova O, Tyurikova O, Semyanov A (2018) Activity-dependent changes in transporter and potassium currents in hippocampal astrocytes. Brain Res Bull 136:37–43

    Article  CAS  PubMed  Google Scholar 

  11. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35(4):317–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196

    Article  PubMed  Google Scholar 

  13. Edvinsson L (2001) Calcitonin gene-related peptide (CGRP) and the pathophysiology of headache: therapeutic implications. CNS Drugs 15(10):745–753

    Article  CAS  PubMed  Google Scholar 

  14. Meng ID, Cao L (2007) From migraine to chronic daily headache: the biological basis of headache transformation. Headache 47(8):1251–1258

    Article  PubMed  Google Scholar 

  15. Weir GA, Cader MZ (2011) New directions in migraine. BMC Med 9:116

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fried NT, Maxwell CR, Elliott MB, Oshinsky ML (2018) Region-specific disruption of the blood-brain barrier following repeated inflammatory dural stimulation in a rat model of chronic trigeminal allodynia. Cephalalgia 38(4):674–689

    Article  PubMed  Google Scholar 

  17. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  CAS  PubMed  Google Scholar 

  18. Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15(8):483–490

    Article  PubMed  Google Scholar 

  19. Afroz S, Arakaki R, Iwasa T, Oshima M, Hosoki M, Inoue M et al (2019) CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int J Mol Sci 20(3):711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Messlinger K, Russo AF (2019) Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 39(13):1661–1674

    Article  PubMed  Google Scholar 

  21. Teepker M, Munk K, Mylius V, Haag A, Möller JC, Oertel WH et al (2009) Serum concentrations of s100b and NSE in migraine. Headache 49(2):245–252

    Article  PubMed  Google Scholar 

  22. Covelli V, Maffione AB, Munno I, Jirillo E (1990) Alterations of nonspecific immunity in patients with common migraine. J Clin Lab Anal 4(1):9–15

    Article  CAS  PubMed  Google Scholar 

  23. Gazerani P, Pourpak Z, Ahmadiani A, Hemmati A, Kazemnejad A (2003) A correlation between migraine, histamine and immunoglobulin e. Scand J Immunol 57(3):286–290

    Article  CAS  PubMed  Google Scholar 

  24. Covelli V, Munno I, Pellegrino NM, Altamura M, Decandia P, Marcuccio C et al (1991) Are TNF-alpha and IL-1 beta relevant in the pathogenesis of migraine without aura? Acta Neurol (Napoli) 13(2):205–211

    CAS  PubMed  Google Scholar 

  25. Iyengar S, Johnson KW, Ossipov MH, Aurora SK (2019) CGRP and the trigeminal system in migraine. Headache 59(5):659–681

    Article  PubMed  PubMed Central  Google Scholar 

  26. Raddant AC, Russo AF (2014) Reactive oxygen species induce procalcitonin expression in trigeminal ganglia glia. Headache 54(3):472–484

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Xin T, He W, Li F, Su ZQ (2014) Myelinated Ah-type trigeminal ganglion neurons in female rats: neuroexcitability, chemosensitivity to histamine, and potential clinical impact. Neurosci Lett 567:74–79

    Article  CAS  PubMed  Google Scholar 

  28. Hirata E, Ishibashi K, Kohsaka S, Shinjo K, Kojima S, Kondo Y et al (2020) The brain microenvironment induces DNMT1 suppression and indolence of metastatic cancer cells. iScience 23(9):101480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R (2011) Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci 31(40):14204–14217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8(7):679–690

    Article  PubMed  Google Scholar 

  31. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97(2):553–622

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR (2007) Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. SciWorldJ 7:98–111

    Google Scholar 

  33. Peters O, Schipke CG, Hashimoto Y, Kettenmann H (2003) Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci 23(30):9888–9896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science (New York, NY) 339(6123):1092–1095

    Article  CAS  Google Scholar 

  35. Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C et al (2013) Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 14(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  36. Erdener ŞE, Kaya Z, Dalkara T (2021) Parenchymal neuroinflammatory signaling and dural neurogenic inflammation in migraine. J Headache Pain 22(1):138

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y et al (2013) Casein kinase iδ mutations in familial migraine and advanced sleep phase. Sci Transl Med 5(183):183ra56 (1-11)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Investig 127(9):3210–3219

    Article  PubMed  PubMed Central  Google Scholar 

  39. Freitag FG (2013) Why Do migraines often decrease as we age? CURR PAIN HEADACHE REP 17(10)

  40. Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9(11):637–644

    Article  PubMed  Google Scholar 

  41. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B et al (2001) Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A 98(8):4687–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rogawski MA (2008) Common pathophysiologic mechanisms in migraine and epilepsy. Arch Neurol 65(6):709–714

    Article  PubMed  Google Scholar 

  43. Lucas C (2021) Migraine with aura. Revue neurologique 177(7):779–784

    Article  CAS  PubMed  Google Scholar 

  44. Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR et al (2019) Imaging of neuroinflammation in migraine with aura: A [(11)C]PBR28 PET/MRI study. Neurology 92(17):e2038–e2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wiggers A, Ashina H, Hadjikhani N, Sagare A, Zlokovic BV, Lauritzen M et al (2022) Brain barriers and their potential role in migraine pathophysiology. J Headache Pain 23(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yamanaka G, Suzuki S, Morishita N, Takeshita M, Kanou K, Takamatsu T et al (2021) Role of neuroinflammation and blood-brain barrier permutability on migraine. Int J Mol Sci 22(16)

  47. Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J 2021 Migraine: calcium channels and glia. Int J Mol Sci 22(5)

  48. da Costa SC, Passos IC, Réus GZ, Carvalho AF, Soares JC, Quevedo J (2016) The comorbidity of bipolar disorder and migraine: the role of inflammation and oxidative and nitrosative stress. Curr Mol Med 16(2):179–186

    Article  PubMed  Google Scholar 

  49. Neri M, Frustaci A, Milic M, Valdiglesias V, Fini M, Bonassi S et al (2015) A meta-analysis of biomarkers related to oxidative stress and nitric oxide pathway in migraine. Cephalalgia 35(10):931–937

    Article  PubMed  Google Scholar 

  50. Shatillo A, Koroleva K, Giniatullina R, Naumenko N, Slastnikova AA, Aliev RR et al (2013) Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253:341–349

    Article  CAS  PubMed  Google Scholar 

  51. Mickle AD, Shepherd AJ, Mohapatra DP (2016) Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel, Switzerland) 9(4)

  52. Borkum JM (2016) Migraine triggers and oxidative stress: a narrative review and synthesis. Headache 56(1):12–35

    Article  PubMed  Google Scholar 

  53. Akopian AN (2011) Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. Curr Pharm Biotechnol 12(1):89–94

    Article  CAS  PubMed  Google Scholar 

  54. Burow P, Meyer A, Naegel S, Watzke S, Zierz S, Kraya T (2021) Headache and migraine in mitochondrial disease and its impact on life-results from a cross-sectional, questionnaire-based study. Acta Neurol Belg 121(5):1151–1156

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vollono C, Primiano G, Della Marca G, Losurdo A, Servidei S (2017) Migraine in mitochondrial disorders: prevalence and characteristics. Cephalalgia : an international journal of headache 38(6):1093–1106

    Article  PubMed  Google Scholar 

  56. Tiehuis LH, Koene S, Saris CGJ, Janssen MCH (2020) Mitochondrial migraine; a prevalence, impact and treatment efficacy cohort study. Mitochondrion 53:128–132

    Article  CAS  PubMed  Google Scholar 

  57. Gross EC, Putananickal N, Orsini AL, Vogt DR, Sandor PS, Schoenen J et al (2021) Mitochondrial function and oxidative stress markers in higher-frequency episodic migraine. Sci Rep 11(1):4543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fila M, Chojnacki C, Chojnacki J, Blasiak J (2021) Nutrients to improve mitochondrial function to reduce brain energy deficit and oxidative stress in migraine. Nutrients 13(12)

  59. Geyik S, Altunısık E, Neyal AM, Taysi S (2016) Oxidative stress and DNA damage in patients with migraine. J Headache Pain 17:10

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tuncel D, Tolun FI, Gokce M, Imrek S, Ekerbiçer H (2008) Oxidative stress in migraine with and without aura. Biol Trace Elem Res 126(1–3):92–97

    Article  CAS  PubMed  Google Scholar 

  61. Grech O, Sassani M, Terwindt G, Lavery GG, Mollan SP, Sinclair AJ (2022) Alterations in metabolic flux in migraine and the translational relevance. J Headache Pain 23(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  62. Togha M, Razeghi Jahromi S, Ghorbani Z, Ghaemi A, Rafiee P (2019) An investigation of oxidant/antioxidant balance in patients with migraine: a case-control study. BMC Neurol 19(1):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zangar RC, Bollinger N, Weber TJ, Tan RM, Markillie LM, Karin NJ (2011) Reactive oxygen species alter autocrine and paracrine signaling. Free Radical Biol Med 51(11):2041–2047

    Article  CAS  Google Scholar 

  64. Olesen J (2010) Nitric oxide-related drug targets in headache. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7(2):183–190

    Article  CAS  PubMed  Google Scholar 

  65. Aral LA, Ergun MA, Bolay H (2021) Cellular iron storage and trafficking are affected by GTN stimulation in primary glial and meningeal cell culture. Turk J Biol 45(1):46–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dini E, Mazzucchi S, De Luca C, Cafalli M, Chico L, Lo Gerfo A, et al (2019) Plasma levels of oxidative stress markers, before and after BoNT/a treatment, in chronic migraine. Toxins 11(10)

  67. Tripathi GM, Kalita J, Misra UK (2018) A study of oxidative stress in migraine with special reference to prophylactic therapy. Int J Neurosci 128(4):318–324

    Article  CAS  PubMed  Google Scholar 

  68. Gómez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hammond TR, Robinton D, Stevens B (2018) Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol 34:523–544

    Article  CAS  PubMed  Google Scholar 

  70. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su M, Ran Y, He Z, Zhang M, Hu G, Tang W et al (2018) Inhibition of toll-like receptor 4 alleviates hyperalgesia induced by acute dural inflammation in experimental migraine. Mol Pain 14:1744806918754612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science (New York, NY) 308(5726):1314–1318

    Article  CAS  Google Scholar 

  73. Franceschini A, Hullugundi SK, van den Maagdenberg A, Nistri A, Fabbretti E (2013) Effects of LPS on P2X3 receptors of trigeminal sensory neurons and macrophages from mice expressing the R192Q Cacna1a gene mutation of familial hemiplegic migraine-1. Purinergic Signalling 9(1):7–13

    Article  CAS  PubMed  Google Scholar 

  74. Shim HJ, Park S, Lee JW, Park HJ, Baek SH, Kim EK et al (2016) Extracts from Dendropanax morbifera leaves have modulatory effects on neuroinflammation in microglia. Am J Chin Med 44(1):119–132

    Article  PubMed  Google Scholar 

  75. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  76. Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88(4):594–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pusic KM, Pusic AD, Kemme J, Kraig RP (2014) Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia 62(7):1176–1194

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pusic KM, Won L, Kraig RP, Pusic AD (2019) IFN gamma-stimulated dendritic cell exosomes for treatment of migraine modeled using spreading depression. FRONT NEUROSCI 13

  79. Gaojian T, Dingfei Q, Linwei L, Xiaowei W, Zheng Z, Wei L et al (2020) Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov 6(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wen QW, Wang YF, Pan Q, Tian RM, Zhang DK, Qin GC, et al (2021) MicroRNA-155–5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J NEUROINFLAMMATION 18(1)

  81. Jiang L, Zhang Y, Jing F, Long T, Qin G, Zhang D et al (2021) P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. J Neuroinflammation 18(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen S-P, Qin T, Seidel JL, Zheng Y, Eikermann M, Ferrari MD et al (2017) Inhibition of the P2X7–PANX1 complex suppresses spreading depolarization and neuroinflammation. Brain 140(6):1643–1656

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jiang L, Zhang YX, Jing F, Long T, Qin GC, Zhang DK, et al (2021) P2X7R-mediated autophagic impairment contributes to central sensitization in a chronic migraine model with recurrent nitroglycerin stimulation in mice. J NEUROINFLAMMATION 18(1)

  84. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18(8):1081–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Karkhaneh A, Ansari M, Emamgholipour S, Rafiee MH (2015) The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine. Iran J Basic Med Sci 18(9):894–901

    PubMed  PubMed Central  Google Scholar 

  86. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433(7021):73–77

    Article  CAS  PubMed  Google Scholar 

  87. Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80(4–5):224–232

    Article  CAS  PubMed  Google Scholar 

  88. Peteri U-K, Niukkanen M, Castrén ML (2019) Astrocytes in neuropathologies affecting the frontal cortex. Front Cell Neurosci 13:44

  89. Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R (2017) Unravelling and exploiting astrocyte dysfunction in Huntington’s disease. Trends Neurosci 40(7):422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang R, Diaz-Castro B, Looger LL, Khakh BS (2016) Dysfunctional calcium and glutamate signaling in striatal astrocytes from Huntington’s disease model mice. J Neurosci 36(12):3453–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steinhäuser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60(8):1192–1202

    Article  PubMed  Google Scholar 

  92. Steinhäuser C, Grunnet M, Carmignoto G (2016) Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 323:157–169

    Article  PubMed  Google Scholar 

  93. Zou J, Wang Y-X, Dou F-F, Lü H-Z, Ma Z-W, Lu P-H et al (2010) Glutamine synthetase down-regulation reduces astrocyte protection against glutamate excitotoxicity to neurons. Neurochem Int 56(4):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH (2009) Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 29(4):1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science (New York, NY) 302(5651):1760–1765

    Article  CAS  Google Scholar 

  97. Ghaemi A, Alizadeh L, Babaei S, Jafarian M, Ghadiri MK, Meuth SG et al (2018) Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 38(4):626–638

    Article  PubMed  Google Scholar 

  98. Zhao J, Blaeser AS, Levy D (2021) Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity. Pain 162(9):2386–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Leite JA, Isaksen TJ, Heuck A, Scavone C, Lykke-Hartmann K (2020) The α(2) Na(+)/K(+)-ATPase isoform mediates LPS-induced neuroinflammation. Sci Rep 10(1):14180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ellman DG, Isaksen TJ, Lund MC, Dursun S, Wirenfeldt M, Jørgensen LH et al (2017) The loss-of-function disease-mutation G301R in the Na(+)/K(+)-ATPase α(2) isoform decreases lesion volume and improves functional outcome after acute spinal cord injury in mice. BMC Neurosci 18(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhou X, Liang J, Wang J, Fei Z, Qin G, Zhang D et al (2020) Up-regulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine. J Neurochem 155(4):370–389

    Article  CAS  PubMed  Google Scholar 

  102. Tang J, Bair M, Descalzi G (2021) Reactive astrocytes: critical players in the development of chronic pain. Front Psychiatry 12

  103. Kilic K, Karatas H, Dönmez-Demir B, Eren-Kocak E, Gursoy-Ozdemir Y, Can A et al (2018) Inadequate brain glycogen or sleep increases spreading depression susceptibility. Ann Neurol 83(1):61–73

    Article  CAS  PubMed  Google Scholar 

  104. Li J, Ye X, Zhou Y, Peng S, Zheng P, Zhang X, et al (2022) Energy metabolic disorder of astrocytes may be an inducer of migraine attack. Brain Sci 12(7)

  105. Waschek JA, Baca SM, Akerman S (2018) PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain 19(1):1–13

    Article  CAS  Google Scholar 

  106. Yokai M, Kurihara T, Miyata A (2016) Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain 12:1744806916646383

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jasmin L, Vit JP, Bhargava A, Ohara PT (2010) Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol 6(1):63–71

    Article  PubMed  PubMed Central  Google Scholar 

  108. Huang LY, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61(10):1571–1581

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pannese E (2018) Biology and pathology of perineuronal satellite cells in sensory ganglia. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia: Springer 1–63

  110. Cieślak M, Czarnecka J, Roszek K, Komoszyński M (2015) The role of purinergic signaling in the etiology of migraine and novel antimigraine treatment. Purinergic Signal 11(3):307–316

    Article  PubMed  PubMed Central  Google Scholar 

  111. Matsuka Y, Afroz S, Dalanon JC, Iwasa T, Waskitho A, Oshima M (2020) The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci Biobehav Rev 108:393–399

    Article  CAS  PubMed  Google Scholar 

  112. Fabbretti E (2013) ATP P2X3 receptors and neuronal sensitization. Front Cell Neurosci 7

  113. Yegutkin GG, Guerrero-Toro C, Kilinc E, Koroleva K, Ishchenko Y, Abushik P et al (2016) Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions. Purinergic Signalling 12(3):561–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Edvinsson J, Warfvinge K, Edvinsson L (2015) Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: an organ culture study. J Headache Pain 16(1)

  115. Lukács M, Haanes KA, Majláth Z, Tajti J, Vécsei L, Warfvinge K, et al (2015) Dural administration of inflammatory soup or complete Freund’s adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain 16(1)

  116. Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, et al (2010) Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. MOL PAIN 6

  117. Aczel T, Kecskes A, Kun J, Szenthe K, Banati F, Szathmary S, et al (2020) Hemokinin-1 gene expression is upregulated in trigeminal ganglia in an inflammatory orofacial pain model: potential role in peripheral sensitization. Int J Mol Sci 21(8)

  118. Chen Y, Zhang X, Wang C, Li G, Gu Y, Huang LY (2008) Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci U S A 105(43):16773–16778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bernier LP, Ase AR, Séguéla P (2018) P2X receptor channels in chronic pain pathways. Br J Pharmacol 175(12):2219–2230

    Article  CAS  PubMed  Google Scholar 

  120. Bahat A, MacVicar T, Langer T (2021) Metabolism and innate immunity meet at the mitochondria. Front Cell Dev Biol 9

  121. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bhat R, Steinman L (2009) Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64(1):123–132

    Article  CAS  PubMed  Google Scholar 

  123. Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H (2021) Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 22(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wieseler J, Ellis A, McFadden A, Stone K, Brown K, Cady S et al (2017) Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators. Brain Res 1664:87–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang Y, Shan Z, Zhang L, Fan S, Zhou Y, Hu L et al (2022) P2X7R/NLRP3 signaling pathway-mediated pyroptosis and neuroinflammation contributed to cognitive impairment in a mouse model of migraine. J Headache Pain 23(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rueda-Carrasco J, Martin-Bermejo MJ, Pereyra G, Mateo MI, Borroto A, Brosseron F et al (2021) SFRP1 modulates astrocyte-to-microglia crosstalk in acute and chronic neuroinflammation. EMBO Rep 22(11):e51696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Eren-Koçak E, Dalkara T (2021) Ion channel dysfunction and neuroinflammation in migraine and depression. Front Pharmacol 12:777607

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shibata M, Suzuki N (2017) Exploring the role of microglia in cortical spreading depression in neurological disease. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 37(4):1182–1191

    Article  Google Scholar 

  129. Cha YH, Millett D, Kane M, Jen J, Baloh R (2007) Adult-onset hemiplegic migraine with cortical enhancement and oedema. Cephalalgia 27(10):1166–1170

    Article  PubMed  Google Scholar 

  130. Goloncser F, Baranyi M, Iring A, Hricisak L, Otrokocsi L, Benyo Z et al (2021) Involvement of P2Y(12) receptors in a nitroglycerin-induced model of migraine in male mice. Br J Pharmacol 178(23):4626–4645

    Article  CAS  PubMed  Google Scholar 

  131. Franceschini A, Nair A, Bele T, van den Maagdenberg A, Nistri A, Fabbretti E (2012) Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine. BMC NEUROSCI 13

  132. Liu Q, Liu C, Jiang L, Li M, Long T, He W et al (2018) α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res 11:1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33-40

    Article  PubMed  Google Scholar 

  134. Marshall JS, Warrington R, Watson W, Kim HL (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14(2):49

    Article  PubMed  PubMed Central  Google Scholar 

  135. Faraji F, Shojapour M, Farahani I, Ganji A, Mosayebi G (2021) Reduced regulatory T lymphocytes in migraine patients. Neurol Res 43(8):677–682

    Article  CAS  PubMed  Google Scholar 

  136. Pavelek Z, Souček O, Krejsek J, Sobíšek L, Klímová B, Masopust J et al (2020) The role of the immune system and the biomarker CD3 + CD4 + CD45RA-CD62L- in the pathophysiology of migraine. Sci Rep 10(1):12277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Delgado M, Pozo D, Ganea D (2004) The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev 56(2):249–290

    Article  CAS  PubMed  Google Scholar 

  138. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D (1999) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J Immunol (Baltimore, Md : 1950) 162(3):1707–16

    Article  CAS  Google Scholar 

  139. Conti P, D’Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A et al (2019) Progression in migraine: role of mast cells and pro-inflammatory and anti-inflammatory cytokines. Eur J Pharmacol 844:87–94

    Article  CAS  PubMed  Google Scholar 

  140. Yuan H, Silberstein SD (2018) Histamine and migraine. Headache: The Journal of Head and Face. Pain 58(1):184–93

    Google Scholar 

  141. Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141(3):314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang XC, Strassman AM, Burstein R, Levy D (2007) Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J Pharmacol Exp Ther 322(2):806–812

    Article  CAS  PubMed  Google Scholar 

  143. Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130(1–2):166–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pusic AD, Mitchell HM, Kunkler PE, Klauer N, Kraig RP (2015) Spreading depression transiently disrupts myelin via interferon-gamma signaling. Exp Neurol 264:43–54

    Article  CAS  PubMed  Google Scholar 

  145. Magni G, Boccazzi M, Bodini A, Abbracchio MP, van den Maagdenberg AM, Ceruti S (2019) Basal astrocyte and microglia activation in the central nervous system of familial hemiplegic migraine type I mice. Cephalalgia : an international journal of headache 39(14):1809–1817

    Article  PubMed  Google Scholar 

  146. Eising E, de Leeuw C, Min JL, Anttila V, Verheijen MH, Terwindt GM et al (2016) Involvement of astrocyte and oligodendrocyte gene sets in migraine. Cephalalgia : an international journal of headache 36(7):640–647

    Article  PubMed  Google Scholar 

  147. Henssen D, Kluin SJP, Kleerebezem J, Cappellen Van, van Walsum AM, Mulleners WM, Vissers K (2022) White matter changes in the trigeminal spinal tract in chronic migraineurs: an ex vivo study combining ultra-high-field diffusion tensor imaging and polarized light imaging microscopy. Pain 163(4):779–85

    Article  PubMed  Google Scholar 

  148. Hamedani AG, Rose KM, Peterlin BL, Mosley TH, Coker LH, Jack CR et al (2013) Migraine and white matter hyperintensities: the ARIC MRI study. Neurology 81(15):1308–1313

    Article  PubMed  PubMed Central  Google Scholar 

  149. Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Comi G et al (2015) White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia : an international journal of headache 35(14):1278–1286

    Article  PubMed  Google Scholar 

  150. Borsook D, Erpelding N, Lebel A, Linnman C, Veggeberg R, Grant PE et al (2014) Sex and the migraine brain. Neurobiol Dis 68:200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. D’Andrea G, Granella F, Cataldini M, Verdelli F, Balbi T (2001) GABA and glutamate in migraine. J Headache Pain 2(1):s57–s60

    Article  PubMed Central  Google Scholar 

  152. Bigal ME, Hetherington H, Pan J, Tsang A, Grosberg B, Avdievich N et al (2008) Occipital levels of GABA are related to severe headaches in migraine. Neurology 70(22):2078–2080

    Article  CAS  PubMed  Google Scholar 

  153. Wu J, Gao M, Shen J-X, Qiu S-F, Kerrigan JF (2015) Mechanisms of intrinsic epileptogenesis in human gelastic seizures with hypothalamic hamartoma. CNS Neurosci Ther 21(2):104–111

    Article  PubMed  Google Scholar 

  154. Aguila MR, Rebbeck T, Leaver AM, Lagopoulos J, Brennan PC, Hübscher M et al (2016) The association between clinical characteristics of migraine and brain GABA levels: an exploratory study. J Pain 17(10):1058–1067

    Article  CAS  PubMed  Google Scholar 

  155. Aguila ME, Lagopoulos J, Leaver AM, Rebbeck T, Hübscher M, Brennan PC et al (2015) Elevated levels of GABA+ in migraine detected using (1) H-MRS. NMR Biomed 28(7):890–897

    Article  CAS  PubMed  Google Scholar 

  156. Brennan KC, Charles A (2010) An update on the blood vessel in migraine. Curr Opin Neurol 23(3):266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Peek AL, Rebbeck T, Puts NA, Watson J, Aguila MR, Leaver AM (2020) Brain GABA and glutamate levels across pain conditions: a systematic literature review and meta-analysis of 1H-MRS studies using the MRS-Q quality assessment tool. Neuroimage 210:116532

    Article  CAS  PubMed  Google Scholar 

  158. Stærmose TG, Knudsen MK, Kasch H, Blicher JU (2019) Cortical GABA in migraine with aura -an ultrashort echo magnetic resonance spectroscopy study. J Headache Pain 20(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sokolov A, Lyubashina O, Amelin A, Panteleev S (2014) The role of gamma-aminobutyric acid in migraine pathogenesis. Neurochem J 8:89–102

    Article  CAS  Google Scholar 

  160. Grinberg YY, Milton JG, Kraig RP (2011) Spreading depression sends microglia on Lévy flights. PLoS One 6(4):e19294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Noseda R, Borsook D, Burstein R (2017) Neuropeptides and neurotransmitters that modulate thalamo-cortical pathways relevant to migraine headache. Headache 57(Suppl 2):97–111

    Article  PubMed  PubMed Central  Google Scholar 

  162. D’Andrea G, Leon A (2010) Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 31(Suppl 1):S1-7

    Article  Google Scholar 

  163. Shatillo A, Salo RA, Giniatullin R, Gröhn OH (2015) Involvement of NMDA receptor subtypes in cortical spreading depression in rats assessed by fMRI. Neuropharmacology 93:164–170

    Article  CAS  PubMed  Google Scholar 

  164. Boakye PA, Tang S-J, Smith PA (2021) Mediators of neuropathic pain; focus on spinal microglia, CSF-1, BDNF, CCL21, TNF-α, Wnt ligands, and interleukin 1β. Front Pain Res 41.

  165. Ni N, Wang Q, Lin X, Hong Y, Feng Y, Shen L (2019) Studies on the mechanism of glutamate metabolism in NTG-induced migraine rats treated with DCXF. Evid Based Complement Alternat Med 2019:1324797

    Article  PubMed  PubMed Central  Google Scholar 

  166. Yoo BK, Emdad L, Lee SG, Su ZZ, Santhekadur P, Chen D et al (2011) Astrocyte elevated gene-1 (AEG-1): a multifunctional regulator of normal and abnormal physiology. Pharmacol Ther 130(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Guerrero-Toro C, Koroleva K, Ermakova E, Gafurov O, Abushik P, Tavi P et al (2022) Testing the role of glutamate NMDA receptors in peripheral trigeminal nociception implicated in migraine pain. Int J Mol Sci 23(3):1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Van der Auwera S, Teumer A, Hertel J, Homuth G, Völker U, Lucht MJ et al (2016) The inverse link between genetic risk for schizophrenia and migraine through NMDA (N-methyl-D-aspartate) receptor activation via D-serine. Eur Neuropsychopharmacol 26(9):1507–1515

    Article  PubMed  Google Scholar 

  169. Abushik PA, Niittykoski M, Giniatullina R, Shakirzyanova A, Bart G, Fayuk D et al (2014) The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 129(2):264–274

    Article  CAS  PubMed  Google Scholar 

  170. Gasparini CF, Smith RA, Griffiths LR (2016) Genetic insights into migraine and glutamate: a protagonist driving the headache. J Neurol Sci 367:258–268

    Article  CAS  PubMed  Google Scholar 

  171. Paredes S, Cantillo S, Candido KD, Knezevic NN 2019 An association of serotonin with pain disorders and its modulation by estrogens. Int J Mol Sci 20(22)

  172. Kilinc E, Guerrero-Toro C, Zakharov A, Vitale C, Gubert-Olive M, Koroleva K et al (2017) Serotonergic mechanisms of trigeminal meningeal nociception: implications for migraine pain. Neuropharmacology 116:160–173

    Article  CAS  PubMed  Google Scholar 

  173. Deen M, Christensen CE, Hougaard A, Hansen HD, Knudsen GM, Ashina M (2017) Serotonergic mechanisms in the migraine brain - a systematic review. Cephalalgia 37(3):251–264

    Article  PubMed  Google Scholar 

  174. Cornelison LE, Woodman SE, Durham PL (2020) Inhibition of trigeminal nociception by non-invasive vagus nerve stimulation: investigating the role of GABAergic and serotonergic pathways in a model of episodic migraine. Front Neurol 11

  175. Giniatullin R (2022) 5-hydroxytryptamine in migraine: the puzzling role of ionotropic 5-HT(3) receptor in the context of established therapeutic effect of metabotropic 5-HT(1) subtypes. Br J Pharmacol 179(3):400–415

    Article  CAS  PubMed  Google Scholar 

  176. Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, Carrillo-Mora P, Bandala C, Reyes-Long S et al (2018) Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol 16(2):210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59(7):1084–1088

    Article  PubMed  Google Scholar 

  178. Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L (2019) Perivascular neurotransmitters: regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 39(4):610–632

    Article  CAS  Google Scholar 

  179. Bowen EJ, Schmidt TW, Firm CS, Russo AF, Durham PL (2006) Tumor necrosis factor-alpha stimulation of calcitonin gene-related peptide expression and secretion from rat trigeminal ganglion neurons. J Neurochem 96(1):65–77

    Article  CAS  PubMed  Google Scholar 

  180. Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17(3):166–174

    Article  CAS  PubMed  Google Scholar 

  181. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49(1):65–76

    Article  CAS  PubMed  Google Scholar 

  182. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol 9(4):344–352

    Article  CAS  PubMed  Google Scholar 

  183. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142

    Article  CAS  PubMed  Google Scholar 

  184. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 30(26):8807–8814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ansari M, Karkhaneh A, Kheirollahi A, Emamgholipour S, Rafiee MH (2017) The effect of melatonin on gene expression of calcitonin gene-related peptide and some proinflammatory mediators in patients with pure menstrual migraine. Acta Neurol Belg 117(3):677–685

    Article  PubMed  Google Scholar 

  186. Okamoto K, Tashiro A, Chang Z, Bereiter DA (2010) Bright light activates a trigeminal nociceptive pathway. Pain 149(2):235–242

    Article  PubMed  PubMed Central  Google Scholar 

  187. Blixt FW, Radziwon-Balicka A, Edvinsson L, Warfvinge K (2017) Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina. Exp Eye Res 161:124–131

    Article  CAS  PubMed  Google Scholar 

  188. Thalakoti S, Patil VV, Damodaram S, Vause CV, Langford LE, Freeman SE et al (2007) Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache 47(7):1008–23 (discussion 24-5)

    Article  PubMed  PubMed Central  Google Scholar 

  189. Mikhailov N, V. Mamontov O, A. Kamshilin A, Giniatullin R. Parasympathetic Cholinergic and Neuropeptide Mechanisms of Migraine. Anesth Pain Med. 2017 7(1):e42210. https://doi.org/10.5812/aapm.42210

  190. Shelukhina I, Mikhailov N, Abushik P, Nurullin L, Nikolsky EE, Giniatullin R (2017) Cholinergic nociceptive mechanisms in rat meninges and trigeminal ganglia: potential implications for migraine pain. Front Neurol 8:163

    Article  PubMed  PubMed Central  Google Scholar 

  191. Thuraiaiyah J, Kokoti L, Al-Karagholi MA-M, Ashina M (2022) Involvement of adenosine signaling pathway in migraine pathophysiology: a systematic review of preclinical studies. J Headache pain 23(1):43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Guo Y, Cheng Y, An J, Qi Y, Luo G (2021) Neuropeptide changes in an improved migraine model with repeat stimulations. Transl Neurosci 12(1):523–532

    Article  PubMed  PubMed Central  Google Scholar 

  193. Theodorakis PE, Müller EA, Craster RV, Matar OK (2017) Physical insights into the blood–brain barrier translocation mechanisms. Phys Biol 14(4):041001

    Article  PubMed  Google Scholar 

  194. Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA (2017) Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 79:119–133

    Article  CAS  PubMed  Google Scholar 

  195. Ramachandran R (2018) Neurogenic inflammation and its role in migraine. Semin Immunopathol 40(3):301–314

    Article  CAS  PubMed  Google Scholar 

  196. Matsuda M, Huh Y, Ji RR (2019) Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 33(1):131–139

    Article  PubMed  Google Scholar 

  197. Dreier JP, Reiffurth C (2015) The stroke-migraine depolarization continuum. Neuron 86(4):902–922

    Article  CAS  PubMed  Google Scholar 

  198. Bartsch T, Schönfeld R, Müller FJ, Alfke K, Leplow B, Aldenhoff J et al (2010) Focal lesions of human hippocampal CA1 neurons in transient global amnesia impair place memory. Science (New York, NY) 328(5984):1412–1415

    Article  CAS  Google Scholar 

  199. Dichgans M, Mayer M, Uttner I, Brüning R, Müller-Höcker J, Rungger G et al (1998) The phenotypic spectrum of CADASIL: Clinical findings in 102 cases. Ann Neurol 44(5):731–739

    Article  CAS  PubMed  Google Scholar 

  200. Chen H, Tang X, Li J, Hu B, Yang W, Zhan M et al (2022) IL-17 crosses the blood-brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine. J Headache Pain 23(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  201. Celikbilek A, Sabah S, Tanik N, Ak H, Atalay T, Yilmaz N (2014) Is serum S100B protein an useful biomarker in migraine? Neurol Sci : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 35(8):1197–1201

    Article  Google Scholar 

  202. McIlvried LA, Albers K, Gold MS (2010) Distribution of artemin and GFRalpha3 labeled nerve fibers in the dura mater of rat: artemin and GFRalpha3 in the dura. Headache 50(3):442–450

    Article  PubMed  Google Scholar 

  203. Yi T, Gao P, Zhu T, Yin H, Jin S (2022) Glymphatic system dysfunction: a novel mediator of sleep disorders and headaches. Front Neurol 13

  204. Mikhailov N, Virenque A, Koroleva K, Eme-Scolan E, Teleman M, Abdollahzadeh A et al (2022) The role of the meningeal lymphatic system in local meningeal inflammation and trigeminal nociception. Sci Rep 12(1):8804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee DA, Lee H-J, Park KM (2022) Normal glymphatic system function in patients with migraine: a pilot study. Headache: The Journal of Head and Face Pain 62(6):718–25

    Article  Google Scholar 

  206. Sarrouilhe D, Dejean C, Mesnil M (2014) Involvement of gap junction channels in the pathophysiology of migraine with aura. FRONT PHYSIOL 5

  207. de Corato A, Capuano A, Currò D, Tringali G, Navarra P, Dello Russo C (2011) Trigeminal satellite cells modulate neuronal responses to triptans: relevance for migraine therapy. Neuron Glia Biol 7(2–4):109–116

    Article  PubMed  Google Scholar 

  208. D’Andrea G, Colavito D, Dalle Carbonare M, Leon A (2011) Migraine with aura: conventional and non-conventional treatments. Neurol Sci : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 32(Suppl 1):S121–S129

    Article  Google Scholar 

  209. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine–current understanding and treatment. N Engl J Med 346(4):257–270

    Article  CAS  PubMed  Google Scholar 

  210. Bhalla P, Sharma HS, Wurch T, Pauwels PJ, Saxena PR (2002) Molecular cloning and expression of the porcine trigeminal ganglion cDNA encoding a 5-ht(1F) receptor. Eur J Pharmacol 436(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

  211. Tfelt-Hansen P, Saxena PR, Dahlöf C, Pascual J, Láinez M, Henry P et al (2000) Ergotamine in the acute treatment of migraine: a review and European consensus. Brain 123(1):9–18

    Article  PubMed  Google Scholar 

  212. Milligan ED, Soderquist RG, Malone SM, Mahoney JH, Hughes TS, Langer SJ et al (2006) Intrathecal polymer-based interleukin-10 gene delivery for neuropathic pain. Neuron Glia Biol 2(4):293–308

    Article  PubMed  PubMed Central  Google Scholar 

  213. Rossi P, Fiermonte G, Pierelli F (2003) Cinnarizine in migraine prophylaxis: efficacy, tolerability and predictive factors for therapeutic responsiveness An open-label pilot trial. Funct Neurol 18(3):155–159

    PubMed  Google Scholar 

  214. Koyuncu Irmak D, Kilinc E, Tore F (2019) Shared fate of meningeal mast cells and sensory neurons in migraine. Front Cell Neurosci 13:136

    Article  PubMed  PubMed Central  Google Scholar 

  215. Meloto CB, Ingelmo P, Perez EV, Pitt R, González Cárdenas VH, Mohamed N et al (2021) Mast cell stabilizer ketotifen fumarate reverses inflammatory but not neuropathic-induced mechanical pain in mice. Pain reports 6(2):e902

    Article  PubMed  PubMed Central  Google Scholar 

  216. Lopresti AL, Smith SJ, Drummond PD (2020) Herbal treatments for migraine: a systematic review of randomised-controlled studies. Phytotherapy research : PTR 34(10):2493–2517

    Article  PubMed  Google Scholar 

  217. Yarnell E (2017) Herbal medicine and migraine. Altern Complementary Ther 23(5):192–201

    Article  Google Scholar 

  218. Nor MNM, Rupenthal ID, Green CR, Acosta ML (2020) Connexin hemichannel block using orally delivered tonabersat improves outcomes in animal models of retinal disease. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 17(1):371–387

    Article  Google Scholar 

  219. Durham PL, Garrett FG (2010) Emerging importance of neuron-satellite glia interactions within trigeminal ganglia in craniofacial pain. Open Pain Journal 3(1):3–13

    Article  CAS  Google Scholar 

  220. Edvinsson L (2017) The trigeminovascular pathway: role of CGRP and CGRP receptors in migraine. Headache 57(Suppl 2):47–55

    Article  PubMed  Google Scholar 

  221. Melo-Carrillo A, Strassman AM, Nir RR, Schain AJ, Noseda R, Stratton J et al (2017) Fremanezumab-a humanized monoclonal anti-CGRP antibody-inhibits thinly myelinated (Aδ) but not unmyelinated (C) meningeal nociceptors. J Neurosci 37(44):10587–10596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Vu T, Ma P, Chen JS, de Hoon J, Van Hecken A, Yan L et al (2017) Pharmacokinetic-pharmacodynamic relationship of erenumab (AMG 334) and capsaicin-induced dermal blood flow in healthy and migraine subjects. Pharm Res 34(9):1784–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Takeshima T, Sakai F, Hirata K, Imai N, Matsumori Y, Yoshida R et al (2021) Erenumab treatment for migraine prevention in Japanese patients: efficacy and safety results from a phase 3, randomized, double-blind, placebo-controlled study. Headache 61(6):927–935

    Article  PubMed  PubMed Central  Google Scholar 

  224. Lipton RB, Burstein R, Buse DC, Dodick DW, Koukakis R, Klatt J et al (2021) Efficacy of erenumab in chronic migraine patients with and without ictal allodynia. Cephalalgia : an international journal of headache 41(11–12):1152–1160

    Article  PubMed  Google Scholar 

  225. Wang S-J, Roxas AA Jr, Saravia B, Kim B-K, Chowdhury D, Riachi N et al (2021) Randomised, controlled trial of erenumab for the prevention of episodic migraine in patients from Asia, the Middle East, and Latin America: The EMPOwER study. Cephalalgia : an international journal of headache 41(13):1285–1297

    Article  PubMed  Google Scholar 

  226. Stauffer VL, Dodick DW, Zhang Q, Carter JN, Ailani J, Conley RR (2018) Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol 75(9):1080–1088

    Article  PubMed  PubMed Central  Google Scholar 

  227. Skljarevski V, Matharu M, Millen BA, Ossipov MH, Kim BK, Yang JY (2018) Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 Phase 3 randomized controlled clinical trial. Cephalalgia : an international journal of headache 38(8):1442–1454

    Article  PubMed  Google Scholar 

  228. Reuter U, Lucas C, Dolezil D, Hand AL, Port MD, Nichols RM et al (2021) Galcanezumab in patients with multiple previous migraine preventive medication category failures: results from the open-label period of the CONQUER trial. Adv Ther 38(11):5465–5483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hirata K, Takeshima T, Sakai F, Tatsuoka Y, Suzuki N, Igarashi H et al (2021) A long-term open-label safety study of galcanezumab in Japanese patients with migraine. Expert Opin Drug Saf 20(6):721–733

    Article  CAS  PubMed  Google Scholar 

  230. Ferrari MD, Diener HC, Ning X, Galic M, Cohen JM, Yang R et al (2019) Fremanezumab versus placebo for migraine prevention in patients with documented failure to up to four migraine preventive medication classes (FOCUS): a randomised, double-blind, placebo-controlled, phase 3b trial. Lancet (London, England) 394(10203):1030–1040

    Article  CAS  PubMed  Google Scholar 

  231. Brandes JL, Kudrow D, Yeung PP, Sakai F, Aycardi E, Blankenbiller T et al (2020) Effects of fremanezumab on the use of acute headache medication and associated symptoms of migraine in patients with episodic migraine. Cephalalgia : an international journal of headache 40(5):470–477

    Article  PubMed  Google Scholar 

  232. Goadsby PJ, Silberstein SD, Yeung PP, Cohen JM, Ning X, Yang R et al (2020) Long-term safety, tolerability, and efficacy of fremanezumab in migraine: a randomized study. Neurology 95(18):e2487–e2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R et al (2015) Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol 14(11):1081–1090

    Article  CAS  PubMed  Google Scholar 

  234. Winner PK, McAllister P, Chakhava G, Ailani J, Ettrup A, Krog Josiassen M et al (2021) Effects of intravenous eptinezumab vs placebo on headache pain and most bothersome symptom when initiated during a migraine attack: a randomized clinical trial. JAMA 325(23):2348–2356

    Article  CAS  PubMed  Google Scholar 

  235. Lipton RB, Goadsby PJ, Smith J, Schaeffler BA, Biondi DM, Hirman J et al (2020) Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. Neurology 94(13):e1365–e1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Kudrow D, Cady RK, Allan B, Pederson SM, Hirman J, Mehta LR et al (2021) Long-term safety and tolerability of eptinezumab in patients with chronic migraine: a 2-year, open-label, phase 3 trial. BMC Neurol 21(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Dodick DW, Lipton RB, Ailani J, Lu K, Finnegan M, Trugman JM et al (2019) Ubrogepant for the treatment of migraine. N Engl J Med 381(23):2230–2241

    Article  CAS  PubMed  Google Scholar 

  238. Lipton RB, Croop R, Stock EG, Stock DA, Morris BA, Frost M et al (2019) Rimegepant, an oral calcitonin gene-related peptide receptor antagonist, for migraine. N Engl J Med 381(2):142–149

    Article  CAS  PubMed  Google Scholar 

  239. Knyihár-Csillik E, Chadaide Z, Okuno E, Krisztin-Péva B, Toldi J, Varga C et al (2004) Kynurenine aminotransferase in the supratentorial dura mater of the rat: effect of stimulation of the trigeminal ganglion. Exp Neurol 186(2):242–247

    Article  PubMed  Google Scholar 

  240. Hawkins JL, Cornelison LE, Blankenship BA, Durham PL (2017) Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine. PAIN REP 2(6)

  241. Muniz Santana Bastos E, Bispo da Silva A, Cerqueira Coelho PL, Pereira Borges JM, Amaral da Silva VD, Moreau da Cunha VH et al (2021) Anti-inflammatory activity of Jatropha curcas L. in brain glial cells primary cultures. J Ethnopharmacol 264:113201

    Article  CAS  PubMed  Google Scholar 

  242. Takanashi K, Shibata K, Mizuno K, Komatsu R, Koizumi S (2021) Goshajinkigan attenuates paclitaxel-induced neuropathic pain via cortical astrocytes. Pharmacol Res Perspect 9(6):e00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Fachel FNS, Dal Prá M, Azambuja JH, Endres M, Bassani VL, Koester LS et al (2020) Glioprotective effect of chitosan-coated rosmarinic acid nanoemulsions against lipopolysaccharide-induced inflammation and oxidative stress in Rat astrocyte primary cultures. Cell Mol Neurobiol 40(1):123–139

    Article  CAS  PubMed  Google Scholar 

  244. Ba X, Wang J, Zhou S, Luo X, Peng Y, Yang S et al (2018) Cinobufacini protects against paclitaxel-induced peripheral neuropathic pain and suppresses TRPV1 up-regulation and spinal astrocyte activation in rats. Biomed pharmacother Biomed pharmacother 108:76–84

    Article  CAS  PubMed  Google Scholar 

  245. Latronico T, Larocca M, Milella S, Fasano A, Rossano R, Liuzzi GM (2021) Neuroprotective potential of isothiocyanates in an in vitro model of neuroinflammation. Inflammopharmacology 29(2):561–571

    Article  CAS  PubMed  Google Scholar 

  246. Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A (2020) Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacological reports : PR 72(4):769–782

    Article  CAS  PubMed  Google Scholar 

  247. Kikuoka R, Miyazaki I, Kubota N, Maeda M, Kagawa D, Moriyama M et al (2020) Mirtazapine exerts astrocyte-mediated dopaminergic neuroprotection. Sci Rep 10(1):20698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Lee TK, Kang IJ, Sim H, Lee JC, Ahn JH, Kim DW, et al (2021) Therapeutic effects of decursin and Angelica gigas Nakai root extract in gerbil brain after transient ischemia via protecting BBB leakage and astrocyte endfeet damage. Molecules (Basel, Switzerland) 26(8)

  249. Zhang Y, Li X, Ciric B, Curtis MT, Chen WJ, Rostami A et al (2020) A dual effect of ursolic acid to the treatment of multiple sclerosis through both immunomodulation and direct remyelination. Proc Natl Acad Sci USA 117(16):9082–9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Song X, Gong Z, Liu K, Kou J, Liu B, Liu K (2020) Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol 34:101559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R et al (2019) The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol 176(11):1728–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zhang F, Zhang JG, Yang W, Xu P, Xiao YL, Zhang HT (2018) 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed Pharmacother Biomed Pharmacother 107:1523–9

    Article  CAS  PubMed  Google Scholar 

  253. Pajarillo E, Rizor A, Lee J, Aschner M, Lee E (2019) The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161:107559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F et al (2020) Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 69(2):e12667

    Article  CAS  PubMed  Google Scholar 

  255. di Giacomo V, Chiavaroli A, Recinella L, Orlando G, Cataldi A, Rapino M, et al (2020) Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in Rat CTX-TNA2 astrocytes and isolated cortexes. Int J Mol Sci 21(10)

  256. Isooka N, Miyazaki I, Kikuoka R, Wada K, Nakayama E, Shin K et al (2020) Dopaminergic neuroprotective effects of rotigotine via 5-HT1A receptors: possibly involvement of metallothionein expression in astrocytes. Neurochem Int 132:104608

    Article  PubMed  Google Scholar 

  257. Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E et al (2018) Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 32:72–83

    Article  PubMed  PubMed Central  Google Scholar 

  258. Siracusa R, Monaco F, D'Amico R, Genovese T, Cordaro M, Interdonato L, et al (2021) Epigallocatechin-3-gallate modulates postoperative pain by regulating biochemical and molecular pathways. Int J Mol Sci 22(13)

  259. Jiao M, Li X, Chen L, Wang X, Yuan B, Liu T et al (2020) Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 17(1):251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Sato K, Nakagawa S, Morofuji Y, Matsunaga Y, Fujimoto T, Watanabe D, et al (2022) Effects of fasudil on blood–brain barrier integrity. Fluids Barriers of the CNS 19(1)

  261. Kim SR, Park Y, Li M, Kim YK, Lee S, Son SY, et al (2022) Anti-inflammatory effect of Ailanthus altissima (Mill.) Swingle leaves in lipopolysaccharide-stimulated astrocytes. J Ethnopharmacol 286

  262. Heimfarth L, Nascimento LDS, Amazonas da Silva MDJ, Lucca Junior WD, Lima ES, Quintans-Junior LJ, et al (2021) Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food Chem Toxicol 157

  263. Wang X, Yu Z, He Z, Zhang Q, Yu S (2019) Intracerebroventricular infusion of D-serine decreases nociceptive behaviors induced by electrical stimulation of the dura mater of rat. Neurol Res 41(3):204–207

    Article  CAS  PubMed  Google Scholar 

  264. Geng Y, Yang J, Cheng X, Han Y, Yan F, Wang C, et al (2022) A bioactive gypenoside (GP-14) alleviates neuroinflammation and blood brain barrier (BBB) disruption by inhibiting the NF-κB signaling pathway in a mouse high-altitude cerebral edema (HACE) model. Int Immunopharmacol 107

  265. Ebrahimi T, Rust M, Kaiser SN, Slowik A, Beyer C, Koczulla AR et al (2018) α1-antitrypsin mitigates NLRP3-inflammasome activation in amyloid β(1–42)-stimulated murine astrocytes. J Neuroinflammation 15(1):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zusso M, Lunardi V, Franceschini D, Pagetta A, Lo R, Stifani S et al (2019) Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation 16(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  267. Wang D, Liu F, Zhu L, Lin P, Han F, Wang X et al (2020) FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J Neuroinflammation 17(1):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhou Q, Guo D, Li X, Wang Y, Ye X, Xue S et al (2020) Anti-inflammatory effects of vinpocetine in LPS-stimulated microglia via activation of AMPK. Anais da Academia Brasileira de Ciencias 92(4):e20200241

    Article  CAS  PubMed  Google Scholar 

  269. Zhao Z, Xu Z, Liu T, Huang S, Huang H, Huang X (2019) Human urinary kallidinogenase reduces lipopolysaccharide-induced neuroinflammation and oxidative stress in BV-2 cells. Pain Res Manage 2019:6393150

    Article  Google Scholar 

  270. Hankittichai P, Lou HJ, Wikan N, Smith DR, Potikanond S, Nimlamool W (2020) Oxyresveratrol inhibits IL-1β-induced inflammation via suppressing AKT and ERK1/2 activation in human microglia, HMC3. Int J Mol Sci 21(17)

  271. Wang YM, Ming WZ, Liang H, Wang YJ, Zhang YH, Meng DL (2020) Isoquinolines from national herb Corydalis tomentella and neuroprotective effect against lipopolysaccharide-induced BV2 microglia cells. Bioorg Chem 95:103489

    Article  CAS  PubMed  Google Scholar 

  272. Meng J, Ni J, Wu Z, Jiang M, Zhu A, Qing H et al (2018) The critical role of IL-10 in the antineuroinflammatory and antioxidative effects of rheum tanguticum on activated microglia. Oxid Med Cell Longev 2018:1083596

    Article  PubMed  PubMed Central  Google Scholar 

  273. Liu Y, Deng S, Zhang Z, Gu Y, Xia S, Bao X et al (2020) 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway. Eur J Pharmacol 883:173294

    Article  CAS  PubMed  Google Scholar 

  274. Gunesch S, Hoffmann M, Kiermeier C, Fischer W, Pinto AFM, Maurice T et al (2020) 7-O-esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol 29:101378

    Article  CAS  PubMed  Google Scholar 

  275. Cheng CY, Barro L, Tsai ST, Feng TW, Wu XY, Chao CW, et al (2021) Epigallocatechin-3-gallate-loaded liposomes favor anti-inflammation of microglia cells and promote neuroprotection. Int J Mol Sci 22(6)

  276. Lazarus M, Shen H-Y, Cherasse Y, Qu W-M, Huang Z-L, Bass CE et al (2011) Arousal effect of caffeine depends on adenosine A<sub>2A</sub> receptors in the shell of the nucleus accumbens. J Neurosci 31(27):10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169(2):337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chen Y, Lian P, Peng Z, Wazir J, Ma C, Wei L et al (2022) Alpha-7 nicotinic acetylcholine receptor agonist alleviates psoriasis-like inflammation through inhibition of the STAT3 and NF-κB signaling pathway. Cell Death Discov 8(1):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. VanderPluym JH, Halker Singh RB, Urtecho M, Morrow AS, Nayfeh T, Torres Roldan VD et al (2021) Acute treatments for episodic migraine in adults: a systematic review and meta-analysis. JAMA 325(23):2357–2369

    Article  CAS  PubMed  Google Scholar 

  280. Nijs J, Tumkaya Yilmaz S, Elma Ö, Tatta J, Mullie P, Vanderweeën L et al (2020) Nutritional intervention in chronic pain: an innovative way of targeting central nervous system sensitization? Expert Opin Ther Targets 24(8):793–803

    Article  CAS  PubMed  Google Scholar 

  281. Teschemacher H (2003) Opioid receptor ligands derived from food proteins. Curr Pharm Des 9(16):1331–1344

    Article  CAS  PubMed  Google Scholar 

  282. Hadjivassiliou M, Gibson A, Davies-Jones GA, Lobo AJ, Stephenson TJ, Milford-Ward A (1996) Does cryptic gluten sensitivity play a part in neurological illness? Lancet (London, England) 347(8998):369–371

    Article  CAS  PubMed  Google Scholar 

  283. Johnson B, Freitag FG (2022) New approaches to shifting the migraine treatment paradigm. Front Pain Res (Lausanne, Switzerland) 3:873179

    Article  Google Scholar 

  284. Ashina M, Terwindt GM, Al-Karagholi MA, de Boer I, Lee MJ, Hay DL et al (2021) Migraine: disease characterisation, biomarkers, and precision medicine. Lancet (London, England) 397(10283):1496–1504

    Article  CAS  PubMed  Google Scholar 

  285. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019) Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 18(8):795–804

    Article  PubMed  PubMed Central  Google Scholar 

  286. Su M, Yu S (2018) Chronic migraine: a process of dysmodulation and sensitization. Mol Pain 14:1744806918767697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HA conceptualized the title, prepared the first draft, and designed the figures and tables. ASK conceptualized the title, prepared the first draft, edited the first draft, and prepared final draft. GMT conceptualized the title, critically revised the manuscript, and finalized the draft. AT conceptualized the title, supervised the project, critically revised the manuscript, and finalized the draft. All the authors have read the final manuscript and approved it.

Corresponding authors

Correspondence to Alireza Soltani Khaboushan or Abbas Tafakhori.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, H., Soltani Khaboushan, A., Terwindt, G.M. et al. Glia Signaling and Brain Microenvironment in Migraine. Mol Neurobiol 60, 3911–3934 (2023). https://doi.org/10.1007/s12035-023-03300-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03300-3

Keywords

Navigation