Skip to main content

Advertisement

Log in

Neurogenic inflammation and its role in migraine

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of “sterile inflammation” in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stovner L, Hagen K, Jensen R et al (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27:193–210. https://doi.org/10.1111/j.1468-2982.2007.01288.x

    Article  PubMed  Google Scholar 

  2. Vetvik KG, MacGregor EA (2017) Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol 16:76–87. https://doi.org/10.1016/S1474-4422(16)30293-9

    Article  PubMed  CAS  Google Scholar 

  3. Russell MB, Rasmussen BK, Thorvaldsen P, Olesen J (1995) Prevalence and sex-ratio of the subtypes of migraine. Int J Epidemiol 24:612–618

    Article  PubMed  CAS  Google Scholar 

  4. Olesen J (2016) From ICHD-3 beta to ICHD-3. Cephalalgia 36:401–402. https://doi.org/10.1177/0333102415596446

    Article  PubMed  Google Scholar 

  5. Antonaci F, Ghiotto N, Wu S et al (2016) Recent advances in migraine therapy. Springerplus 5:637. https://doi.org/10.1186/s40064-016-2211-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Reuter U (2014) Anti-CGRP antibodies: a new approach to migraine prevention. Lancet Neurol 13:857–859. https://doi.org/10.1016/S1474-4422(14)70126-7

    Article  PubMed  Google Scholar 

  7. Ray BS, Wolff HG (1940) Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg 41:813–856. https://doi.org/10.1001/archsurg.1940.01210040002001

    Article  Google Scholar 

  8. McNaughton FL, Feindel WH (1997) Innervation of intracranial structures: a reappraisal. In: Physiological Aspects of Clinical Neurology, Oxford: Blackwell Scientific Publications, England, pp 270–293

  9. Procacci P, Maresca M (1999) Referred pain from somatic and visceral structures. Curr Rev Pain 3:96–99. https://doi.org/10.1007/s11916-999-0032-y

    Article  Google Scholar 

  10. Andres KH, Düring Von M, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol 175:289–301

    Article  PubMed  CAS  Google Scholar 

  11. Arnold F (1831) Der Kopftheil des vegetativen Nervensystems beim Menschen: in anatomischer und physiologischer Hinsicht

  12. Luschka H (1856) Die Altersveränderungen der Zwischenwirbelknorpel. Arch Pathol Anat 9:311–327. https://doi.org/10.1007/BF01879395

    Article  Google Scholar 

  13. Grzybowski JL (1931) Innervation de la dure—mére cranienne chez l’homme. Arch Anat Histol Embryol 14:387–428

  14. Penfield W (1940) Dural headache and Innervation of the dura mater. Arch Neurol Psychiatr 44:43–75. https://doi.org/10.1001/archneurpsyc.1940.02280070051003

    Article  Google Scholar 

  15. Steiger HJ, Meakin CJ (1984) The meningeal representation in the trigeminal ganglion—an experimental study in the cat. Headache 24:305–309

    Article  PubMed  CAS  Google Scholar 

  16. Mayberg MR, Zervas NT, Moskowitz MA (1984) Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry. J Comp Neurol 223:46–56. https://doi.org/10.1002/cne.902230105

    Article  PubMed  CAS  Google Scholar 

  17. Uddman R, Hara H, Edvinsson L (1989) Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst 26:69–75

    Article  PubMed  CAS  Google Scholar 

  18. Strassman AM, Potrebic S, Maciewicz RJ (1994) Anatomical properties of brainstem trigeminal neurons that respond to electrical stimulation of dural blood vessels. J Comp Neurol 346:349–365. https://doi.org/10.1002/cne.903460304

    Article  PubMed  CAS  Google Scholar 

  19. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982. https://doi.org/10.1152/jn.1998.79.2.964

    Article  PubMed  CAS  Google Scholar 

  20. Strassman AM, Weissner W, Williams M et al (2004) Axon diameters and intradural trajectories of the dural innervation in the rat. J Comp Neurol 473:364–376. https://doi.org/10.1002/cne.20106

    Article  PubMed  Google Scholar 

  21. Keller JT, Dimlich RV, Zuccarello M et al (1991) Influence of the sympathetic nervous system as well as trigeminal sensory fibres on rat dural mast cells. Cephalalgia 11:215–221. https://doi.org/10.1046/j.1468-2982.1991.1105215.x

    Article  PubMed  CAS  Google Scholar 

  22. Messlinger K, Hanesch U, Baumgärtel M et al (1993) Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol 188:219–237

    Article  PubMed  CAS  Google Scholar 

  23. Levy D, Strassman AM (2002) Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol 88:3021–3031. https://doi.org/10.1152/jn.00029.2002

    Article  PubMed  Google Scholar 

  24. Zhang X, Strassman AM, Novack V et al (2016) Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors’ responses to stimulation of TRPV1 and TRPA1 channels: are we getting closer to solving this puzzle? Cephalalgia 36:875–886. https://doi.org/10.1177/0333102416636843

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schueler M, Messlinger K, Dux M et al (2013) Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain 154:1622–1631. https://doi.org/10.1016/j.pain.2013.04.040

    Article  PubMed  Google Scholar 

  26. Edvinsson L, Gulbenkian S, Barroso CP et al (1998) Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides 19:1213–1225

    Article  PubMed  CAS  Google Scholar 

  27. Edvinsson L, Uddman R (1981) Adrenergic, cholinergic and peptidergic nerve fibres in dura mater—involvement in headache? Cephalalgia 1:175–179. https://doi.org/10.1046/j.1468-2982.1981.0104175.x

    Article  PubMed  CAS  Google Scholar 

  28. Keller JT, Marfurt CF (1991) Peptidergic and serotoninergic innervation of the rat dura mater. J Comp Neurol 309:515–534. https://doi.org/10.1002/cne.903090408

    Article  PubMed  CAS  Google Scholar 

  29. Drummond PD, Lance JW (1992) Pathological sweating and flushing accompanying the trigeminal lacrimal reflex in patients with cluster headache and in patients with a confirmed site of cervical sympathetic deficit. Evidence for parasympathetic cross-innervation. Brain 115(Pt 5):1429–1445

    Article  PubMed  Google Scholar 

  30. Drummond PD (1994) Sweating and vascular responses in the face: normal regulation and dysfunction in migraine, cluster headache and harlequin syndrome. Clin Auton Res 4:273–285

    Article  PubMed  CAS  Google Scholar 

  31. Edvinsson L, Goadsby PJ (1994) Neuropeptides in migraine and cluster headache. Cephalalgia 14:320–327. https://doi.org/10.1046/j.1468-2982.1994.1405320.x

    Article  PubMed  CAS  Google Scholar 

  32. Fang HC (1961) Cerebral arterial innervations in man. Arch Neurol 4:651–656

    Article  PubMed  CAS  Google Scholar 

  33. Keller JT, Saunders MC, Beduk A, Jollis JG (1985) Innervation of the posterior fossa dura of the cat. Brain Res Bull 14:97–102

    Article  PubMed  CAS  Google Scholar 

  34. Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54:996–1009. https://doi.org/10.1111/head.12371

    Article  PubMed  Google Scholar 

  35. Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77:299–308. https://doi.org/10.1152/jn.1997.77.1.299

    Article  PubMed  CAS  Google Scholar 

  36. Lv X, Wu Z, Li Y (2014) Innervation of the cerebral dura mater. Neuroradiol J 27:293–298. https://doi.org/10.15274/NRJ-2014-10052

    Article  PubMed  PubMed Central  Google Scholar 

  37. Düring Von M, Bauersachs M, Böhmer B et al (1990) Neuropeptide Y- and substance P-like immunoreactive nerve fibers in the rat dura mater encephali. Anat Embryol 182:363–373

    Article  Google Scholar 

  38. Strassman AM, Levy D (2006) Response properties of dural nociceptors in relation to headache. J Neurophysiol 95:1298–1306. https://doi.org/10.1152/jn.01293.2005

    Article  PubMed  Google Scholar 

  39. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Published online: 12 December 1996; |384:560–564. https://doi.org/10.1038/384560a0

  40. Dostrovsky JO, Davis KD, Kawakita K (1991) Central mechanisms of vascular headaches. Can J Physiol Pharmacol 69:652–658

    Article  PubMed  CAS  Google Scholar 

  41. Blau JN, Dexter SL (1981) The site of pain origin during migraine attacks. Cephalalgia 1:143–147. https://doi.org/10.1046/j.1468-2982.1981.0103143.x

    Article  PubMed  CAS  Google Scholar 

  42. Bahns E, Ernsberger U, Jänig W, Nelke A (1986) Discharge properties of mechanosensitive afferents supplying the retroperitoneal space. Pflugers Arch 407:519–525

    Article  PubMed  CAS  Google Scholar 

  43. Torebjörk HE, LaMotte RH, Robinson CJ (1984) Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. J Neurophysiol 51:325–339. https://doi.org/10.1152/jn.1984.51.2.325

    Article  PubMed  Google Scholar 

  44. Saper CB, Breder CD (1994) The neurologic basis of fever. N Engl J Med 330:1880–1886. https://doi.org/10.1056/NEJM199406303302609

    Article  PubMed  CAS  Google Scholar 

  45. Schepelmann K, Ebersberger A, Pawlak M et al (1999) Response properties of trigeminal brain stem neurons with input from dura mater encephali in the rat. Neuroscience 90:543–554

    Article  PubMed  CAS  Google Scholar 

  46. Taiwo YO, Levine JD (1991) Further confirmation of the role of adenyl cyclase and of cAMP-dependent protein kinase in primary afferent hyperalgesia. Neuroscience 44:131–135. https://doi.org/10.1016/0306-4522(91)90255-M

    Article  PubMed  CAS  Google Scholar 

  47. Levine JD (1999) Peripheral mechanisms of inflammatory pain. In: Wall PD, Melzack R (ed) Textbook of Pain. Churchill Livingstone, London, pp 59–84

  48. Lopshire JC, Nicol GD (1998) The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: Whole-cell and single-channel studies. J Neurosci 18:6081–6092

    Article  PubMed  CAS  Google Scholar 

  49. Pitchford S, Levine JD (1991) Prostaglandins sensitize nociceptors in cell culture. Neurosci Lett 132:105–108

    Article  PubMed  CAS  Google Scholar 

  50. Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147(Suppl 1):S202–S211. https://doi.org/10.1038/sj.bjp.0706461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L (2013) Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J Pain 14:1289–1303. https://doi.org/10.1016/j.jpain.2013.03.010

    Article  PubMed  CAS  Google Scholar 

  52. Uddman R, Goadsby PJ, Jansen I, Edvinsson L (1993) PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J Cereb Blood Flow Metab 13:291–297. https://doi.org/10.1038/jcbfm.1993.36

    Article  PubMed  CAS  Google Scholar 

  53. Ebersberger A (2001) Physiology of meningeal innervation: aspects and consequences of chemosensitivity of meningeal nociceptors. Microsc Res Tech 53:138–146. https://doi.org/10.1002/jemt.1078

    Article  PubMed  CAS  Google Scholar 

  54. Edvinsson L, Elsås T, Suzuki N et al (2001) Origin and co-localization of nitric oxide synthase, CGRP, PACAP, and VIP in the cerebral circulation of the rat. Microsc Res Tech 53:221–228. https://doi.org/10.1002/jemt.1086

    Article  PubMed  CAS  Google Scholar 

  55. Bae JY, Kim JH, Cho YS et al (2015) Quantitative analysis of afferents expressing substance P, calcitonin gene-related peptide, isolectin B4, neurofilament 200, and peripherin in the sensory root of the rat trigeminal ganglion. J Comp Neurol 523:126–138. https://doi.org/10.1002/cne.23672

    Article  PubMed  CAS  Google Scholar 

  56. Edvinsson L, Hara H, Uddman R (1989) Retrograde tracing of nerve fibers to the rat middle cerebral artery with true blue: colocalization with different peptides. J Cereb Blood Flow Metab 9:212–218. https://doi.org/10.1038/jcbfm.1989.31

    Article  PubMed  CAS  Google Scholar 

  57. Eftekhari S, Salvatore CA, Johansson S et al (2015) Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res 1600:93–109. https://doi.org/10.1016/j.brainres.2014.11.031

    Article  PubMed  CAS  Google Scholar 

  58. Xiao Y, Richter JA, Hurley JH (2008) Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain 4:12. https://doi.org/10.1186/1744-8069-4-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Battaglia G, Rustioni A (1988) Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. J Comp Neurol 277:302–312. https://doi.org/10.1002/cne.902770210

    Article  PubMed  CAS  Google Scholar 

  60. Saito A, Lee TJ (1987) Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries of the rabbit. Circ Res 60:220–228

    Article  PubMed  CAS  Google Scholar 

  61. De Felice M, Ossipov MH, Wang R et al (2010) Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain 133:2475–2488. https://doi.org/10.1093/brain/awq159

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ramachandran R, Ploug KB, Hay-Schmidt A et al (2010) Nitric oxide synthase (NOS) in the trigeminal vascular system and other brain structures related to pain in rats. Neurosci Lett 484:192–196. https://doi.org/10.1016/j.neulet.2010.08.050

    Article  PubMed  CAS  Google Scholar 

  63. Ramachandran R, Bhatt DK, Ploug KB et al (2014) Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 34:136–147. https://doi.org/10.1177/0333102413502735

    Article  PubMed  Google Scholar 

  64. Reuter U, Bolay H, Jansen-Olesen I et al (2001) Delayed inflammation in rat meninges: implications for migraine pathophysiology. Brain 124:2490–2502

    Article  PubMed  CAS  Google Scholar 

  65. Strecker T, Dux M, Messlinger K (2002) Nitric oxide releases calcitonin-gene-related peptide from rat dura mater encephali promoting increases in meningeal blood flow. J Vasc Res 39:489–496. https://doi.org/10.1159/000067206

    Article  PubMed  CAS  Google Scholar 

  66. Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066. https://doi.org/10.1111/j.1460-9568.2006.04742.x

    Article  PubMed  PubMed Central  Google Scholar 

  67. Strecker T, Dux M, Messlinger K (2002) Increase in meningeal blood flow by nitric oxide—interaction with calcitonin gene-related peptide receptor and prostaglandin synthesis inhibition. Cephalalgia 22:233–241. https://doi.org/10.1046/j.1468-2982.2002.00356.x

    Article  PubMed  CAS  Google Scholar 

  68. Zhang X-C, Kainz V, Jakubowski M et al (2009) Localization of COX-1 and COX-2 in the intracranial dura mater of the rat. Neurosci Lett 452:33–36. https://doi.org/10.1016/j.neulet.2009.01.032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Gupta S, Amrutkar DV, Mataji A et al (2010) Evidence for CGRP re-uptake in rat dura mater encephali. Br J Pharmacol 161:1885–1898. https://doi.org/10.1111/j.1476-5381.2010.01012.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575. https://doi.org/10.1016/j.neuron.2007.01.021

    Article  PubMed  CAS  Google Scholar 

  71. Geppert M, Goda Y, Hammer RE et al (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  PubMed  CAS  Google Scholar 

  72. Fernández-Chacón R, Königstorfer A, Gerber SH et al (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49. https://doi.org/10.1038/35065004

    Article  PubMed  Google Scholar 

  73. Peroutka SJ (2005) Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv 5:304–311. https://doi.org/10.1124/mi.5.5.10

    Article  PubMed  CAS  Google Scholar 

  74. Kowalski ML, Sliwinska-Kowalska M, Kaliner MA (1990) Neurogenic inflammation, vascular permeability, and mast cells. II Additional evidence indicating that mast cells are not involved in neurogenic inflammation. J Immunol 145:1214–1221

    PubMed  CAS  Google Scholar 

  75. Dimitriadou V, Buzzi MG, Moskowitz MA, Theoharides TC (1991) Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 44:97–112

    Article  PubMed  CAS  Google Scholar 

  76. Markowitz S, Saito K, Moskowitz MA (1988) Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8:83–91. https://doi.org/10.1046/j.1468-2982.1988.0802083.x

    Article  PubMed  CAS  Google Scholar 

  77. Hökfelt T, Johansson O, Goldstein M (1984) Chemical anatomy of the brain. Science 225:1326–1334

    Article  PubMed  Google Scholar 

  78. Hökfelt T, Millhorn D, Seroogy K et al (1987) Coexistence of peptides with classical neurotransmitters. Experientia 43:768–780

    Article  PubMed  Google Scholar 

  79. Berg EA, Johnson RJ, Leeman SE et al (2000) Isolation and characterization of substance P-containing dense core vesicles from rabbit optic nerve and termini. J Neurosci Res 62:830–839. https://doi.org/10.1002/1097-4547(20001215)62:6<830::AID-JNR10>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  80. Kummer W (1992) Ultrastructure of calcitonin gene-related peptide-immunoreactive nerve fibres in guinea-pig peribronchial ganglia. Regul Pept 37:135–142

    Article  PubMed  CAS  Google Scholar 

  81. Juliano RL, Carver K, Cao C, Ming X (2013) Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 21:27–43. https://doi.org/10.3109/1061186X.2012.740674

    Article  PubMed  CAS  Google Scholar 

  82. Angers CG, Merz AJ (2011) New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 22:18–26. https://doi.org/10.1016/j.semcdb.2010.07.003

    Article  PubMed  CAS  Google Scholar 

  83. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353. https://doi.org/10.1038/26412

    Article  PubMed  CAS  Google Scholar 

  84. Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 120:2864–2874. https://doi.org/10.1242/jcs.012211

    Article  PubMed  CAS  Google Scholar 

  85. Krämer HH, Angerer C, Erbguth F et al (2003) Botulinum toxin A reduces neurogenic flare but has almost no effect on pain and hyperalgesia in human skin. J Neurol 250:188–193. https://doi.org/10.1007/s00415-003-0971-x

    Article  PubMed  CAS  Google Scholar 

  86. Tugnoli V, Capone JG, Eleopra R et al (2007) Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin. Pain 130:76–83. https://doi.org/10.1016/j.pain.2006.10.030

    Article  PubMed  CAS  Google Scholar 

  87. Gazerani P, Staahl C, Drewes AM, Arendt-Nielsen L (2006) The effects of botulinum toxin type A on capsaicin-evoked pain, flare, and secondary hyperalgesia in an experimental human model of trigeminal sensitization. Pain 122:315–325. https://doi.org/10.1016/j.pain.2006.04.014

    Article  PubMed  CAS  Google Scholar 

  88. Carmichael NME, Dostrovsky JO, Charlton MP (2010) Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain 149:316–324. https://doi.org/10.1016/j.pain.2010.02.024

    Article  PubMed  CAS  Google Scholar 

  89. Marino MJ, Terashima T, Steinauer JJ et al (2014) Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 155:674–684. https://doi.org/10.1016/j.pain.2013.12.009

    Article  PubMed  CAS  Google Scholar 

  90. Cui M, Khanijou S, Rubino J, Aoki KR (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107:125–133

    Article  PubMed  CAS  Google Scholar 

  91. Ramachandran R, Lam C, Yaksh TL (2015) Botulinum toxin in migraine: role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis 79:111–122. https://doi.org/10.1016/j.nbd.2015.04.011

    Article  PubMed  CAS  Google Scholar 

  92. Durham PL, Cady R, Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44:35–42—discussion 42–3. https://doi.org/10.1111/j.1526-4610.2004.04007.x

    Article  PubMed  Google Scholar 

  93. Meng J, Ovsepian SV, Wang J et al (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992. https://doi.org/10.1523/JNEUROSCI.5490-08.2009

    Article  PubMed  CAS  Google Scholar 

  94. Theoharides TC, Spanos C, Pang X et al (1995) Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect. Endocrinology 136:5745–5750. https://doi.org/10.1210/endo.136.12.7588332

    Article  PubMed  CAS  Google Scholar 

  95. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49:65–76. https://doi.org/10.1016/j.brainresrev.2004.11.006

    Article  PubMed  CAS  Google Scholar 

  96. Dalkara T, Zervas NT, Moskowitz MA (2006) From spreading depression to the trigeminovascular system. Neurol Sci 27(Suppl 2):S86–S90. https://doi.org/10.1007/s10072-006-0577-z

    Article  PubMed  Google Scholar 

  97. Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep 16:270–277. https://doi.org/10.1007/s11916-012-0255-1

    Article  PubMed  Google Scholar 

  98. Guo A, Vulchanova L, Wang J et al (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J Neurosci 11:946–958

    Article  PubMed  CAS  Google Scholar 

  99. Zhang X-C, Strassman AM, Burstein R, Levy D (2007) Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. J Pharmacol Exp Ther 322:806–812. https://doi.org/10.1124/jpet.107.123745

    Article  PubMed  CAS  Google Scholar 

  100. Zhang X, Levy D, Kainz V et al (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865. https://doi.org/10.1002/ana.22329

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hanko J, Hardebo JE, Kåhrström J et al (1985) Calcitonin gene-related peptide is present in mammalian cerebrovascular nerve fibres and dilates pial and peripheral arteries. Neurosci Lett 57:91–95

    Article  PubMed  CAS  Google Scholar 

  102. Edwards RM, Stack EJ, Trizna W (1991) Calcitonin gene-related peptide stimulates adenylate cyclase and relaxes intracerebral arterioles. J Pharmacol Exp Ther 257:1020–1024

    PubMed  CAS  Google Scholar 

  103. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 17:518–524. https://doi.org/10.1046/j.1468-2982.1997.1704518.x

    Article  PubMed  CAS  Google Scholar 

  104. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Messlinger K, Hanesch U, Kurosawa M et al (1995) Calcitonin gene related peptide released from dural nerve fibers mediates increase of meningeal blood flow in the rat. Can J Physiol Pharmacol 73:1020–1024

    Article  PubMed  CAS  Google Scholar 

  106. Goadsby PJ, Edvinsson L, Ekman R (1988) Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann Neurol 23:193–196. https://doi.org/10.1002/ana.410230214

    Article  PubMed  CAS  Google Scholar 

  107. Zagami AS, Goadsby PJ, Edvinsson L (1990) Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16:69–75

    Article  PubMed  CAS  Google Scholar 

  108. Dux M, Sántha P, Jancsó G (2003) Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J Physiol Lond 552:859–867. https://doi.org/10.1113/jphysiol.2003.050633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Messlinger K, Fischer MJM, Lennerz JK (2011) Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 60:82–89

    Article  PubMed  CAS  Google Scholar 

  110. Lassen LH, Haderslev PA, Jacobsen VB et al (2002) CGRP may play a causative role in migraine. Cephalalgia 22:54–61

    Article  PubMed  CAS  Google Scholar 

  111. Olesen J, Diener H-C, Husstedt IW et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110. https://doi.org/10.1056/NEJMoa030505

    Article  PubMed  CAS  Google Scholar 

  112. Ho TW, Mannix LK, Fan X et al (2008) Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine. Neurology 70:1304–1312. https://doi.org/10.1212/01.WNL.0000286940.29755.61

    Article  PubMed  CAS  Google Scholar 

  113. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187. https://doi.org/10.1002/ana.410280213

    Article  PubMed  CAS  Google Scholar 

  114. Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705. https://doi.org/10.1002/ana.20619

    Article  PubMed  CAS  Google Scholar 

  115. Covasala O, Stirn SL, Albrecht S et al (2012) Calcitonin gene-related peptide receptors in rat trigeminal ganglion do not control spinal trigeminal activity. J Neurophysiol 108:431–440. https://doi.org/10.1152/jn.00167.2011

    Article  PubMed  CAS  Google Scholar 

  116. Bhatt DK, Ramachandran R, Christensen SLT et al (2015) CGRP infusion in unanesthetized rats increases expression of c-Fos in the nucleus tractus solitarius and caudal ventrolateral medulla, but not in the trigeminal nucleus caudalis. Cephalalgia 35:220–233. https://doi.org/10.1177/0333102414535995

    Article  PubMed  Google Scholar 

  117. Rahmann A, Wienecke T, Hansen JM et al (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28:226–236. https://doi.org/10.1111/j.1468-2982.2007.01497.x

    Article  PubMed  CAS  Google Scholar 

  118. Kruuse C, Thomsen LL, Birk S, Olesen J (2003) Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126:241–247

    Article  PubMed  Google Scholar 

  119. Kruuse C, Thomsen LL, Jacobsen TB, Olesen J (2002) The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J Cereb Blood Flow Metab 22:1124–1131. https://doi.org/10.1097/00004647-200209000-00010

    Article  PubMed  CAS  Google Scholar 

  120. Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    Article  PubMed  CAS  Google Scholar 

  121. Alvaro G, Di Fabio R (2007) Neurokinin 1 receptor antagonists—current prospects. Curr Opin Drug Discov Devel 10:613–621

    PubMed  CAS  Google Scholar 

  122. Shepherd SL, Williamson DJ, Beer MS et al (1997) Differential effects of 5-HT1B/1D receptor agonists on neurogenic dural plasma extravasation and vasodilation in anaesthetized rats. Neuropharmacology 36:525–533

    Article  PubMed  CAS  Google Scholar 

  123. Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13:307–311

    Article  PubMed  CAS  Google Scholar 

  125. Goldstein DJ, Wang O, Saper JR et al (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790. https://doi.org/10.1046/j.1468-2982.1997.1707785.x

    Article  PubMed  CAS  Google Scholar 

  126. Diener H (2003) RPR100893, a substance-P antagonist, is not effective in the treatment of migraine attacks. Cephalalgia 23:183–185. https://doi.org/10.1046/j.1468-2982.2003.00496.x

    Article  PubMed  Google Scholar 

  127. Goldstein DJ, Roon KI, Offen WW et al (2001) Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358:1230–1234

    Article  PubMed  CAS  Google Scholar 

  128. Petersen LJ, Church MK, Skov PS (1997) Histamine is released in the wheal but not the flare following challenge of human skin in vivo: a microdialysis study. Clin Exp Allergy 27:284–295

    Article  PubMed  CAS  Google Scholar 

  129. Petersen LJ (1997) Quantitative measurement of extracellular histamine concentrations in intact human skin in vivo by the microdialysis technique: methodological aspects. Allergy 52:547–555

    Article  PubMed  CAS  Google Scholar 

  130. Weidner C, Klede M, Rukwied R et al (2000) Acute effects of substance P and calcitonin gene-related peptide in human skin—a microdialysis study. J Invest Dermatol 115:1015–1020. https://doi.org/10.1046/j.1523-1747.2000.00142.x

    Article  PubMed  CAS  Google Scholar 

  131. Gallai V, Alberti A, Gallai B et al (2003) Glutamate and nitric oxide pathway in chronic daily headache: evidence from cerebrospinal fluid. Cephalalgia 23:166–174. https://doi.org/10.1046/j.1468-2982.2003.00552.x

    Article  PubMed  CAS  Google Scholar 

  132. Sarchielli P, Di Filippo M, Nardi K, Calabresi P (2007) Sensitization, glutamate, and the link between migraine and fibromyalgia. Curr Pain Headache Rep 11:343–351

    Article  PubMed  Google Scholar 

  133. deGroot J, Zhou S, Carlton SM (2000) Peripheral glutamate release in the hindpaw following low and high intensity sciatic stimulation. Neuroreport 11:497–502

    Article  PubMed  CAS  Google Scholar 

  134. Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87:3–11

    Article  PubMed  CAS  Google Scholar 

  135. Nordlind K, Johansson O, Lidén S, Hökfelt T (1993) Glutamate- and aspartate-like immunoreactivities in human normal and inflamed skin. Virchows Arch B Cell Pathol 64:75–82

    Article  CAS  Google Scholar 

  136. Warncke T, Stubhaug A, Jørum E (2000) Preinjury treatment with morphine or ketamine inhibits the development of experimentally induced secondary hyperalgesia in man. Pain 86:293–303

    Article  PubMed  CAS  Google Scholar 

  137. Cairns BE, Sessle BJ, Hu JW (1998) Evidence that excitatory amino acid receptors within the temporomandibular joint region are involved in the reflex activation of the jaw muscles. J Neurosci 18:8056–8064

    Article  PubMed  CAS  Google Scholar 

  138. Davidson EM, Carlton SM (1998) Intraplantar injection of dextrorphan, ketamine or memantine attenuates formalin-induced behaviors. Brain Res 785:136–142

    Article  PubMed  CAS  Google Scholar 

  139. Davidson EM, Coggeshall RE, Carlton SM (1997) Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport 8:941–946

    Article  PubMed  CAS  Google Scholar 

  140. Jackson DL, Graff CB, Richardson JD, Hargreaves KM (1995) Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol 284:321–325

    Article  PubMed  CAS  Google Scholar 

  141. Lawand NB, Willis WD, Westlund KN (1997) Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. Eur J Pharmacol 324:169–177

    Article  PubMed  CAS  Google Scholar 

  142. Carlton SM, Zhou S, Coggeshall RE (1998) Evidence for the interaction of glutamate and NK1 receptors in the periphery. Brain Res 790:160–169

    Article  PubMed  CAS  Google Scholar 

  143. Bhave G, Karim F, Carlton SM, Gereau RW (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4:417–423. https://doi.org/10.1038/86075

    Article  PubMed  CAS  Google Scholar 

  144. Woo DH, Jung SJ, Zhu MH et al (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42. https://doi.org/10.1186/1744-8069-4-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Hu H-J, Bhave G, Gereau RW (2002) Prostaglandin and protein kinase A-dependent modulation of vanilloid receptor function by metabotropic glutamate receptor 5: potential mechanism for thermal hyperalgesia. J Neurosci 22:7444–7452

    Article  PubMed  CAS  Google Scholar 

  146. Juhasz G, Zsombok T, Jakab B et al (2005) Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia 25:179–183. https://doi.org/10.1111/j.1468-2982.2005.00836.x

    Article  PubMed  CAS  Google Scholar 

  147. Johnson KW, Phebus LA, Cohen ML (1998) Serotonin in migraine: theories, animal models and emerging therapies. Prog Drug Res 51:219–244

    Article  PubMed  CAS  Google Scholar 

  148. Durham PL, Sharma RV, Russo AF (1997) Repression of the calcitonin gene-related peptide promoter by 5-HT1 receptor activation. J Neurosci 17:9545–9553

    Article  PubMed  CAS  Google Scholar 

  149. Cutrer FM, Yu XJ, Ayata G et al (1999) Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis. Neuropharmacology 38:1043–1053

    Article  PubMed  CAS  Google Scholar 

  150. Thomsen LL, Olesen J (2001) Nitric oxide in primary headaches. Curr Opin Neurol 14:315–321

    Article  PubMed  CAS  Google Scholar 

  151. Ramachandran R, Bhatt DK, Ploug KB et al (2012) A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia 32:73–84. https://doi.org/10.1177/0333102411430855

    Article  PubMed  Google Scholar 

  152. Lassen LH, Ashina M, Christiansen I et al (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402

    Article  PubMed  CAS  Google Scholar 

  153. Zhang X, Kainz V, Zhao J et al (2013) Vascular extracellular signal-regulated kinase mediates migraine-related sensitization of meningeal nociceptors. Ann Neurol 73:741–750. https://doi.org/10.1002/ana.23873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. McIlvried LA, Cruz JA, Borghesi LA, Gold MS (2016) Sex-, stress-, and sympathetic post-ganglionic-dependent changes in identity and proportions of immune cells in the dura. Cephalalgia. https://doi.org/10.1177/0333102416637832

  155. Dimlich RV, Keller JT, Strauss TA, Fritts MJ (1991) Linear arrays of homogeneous mast cells in the dura mater of the rat. J Neurocytol 20:485–503

    Article  PubMed  CAS  Google Scholar 

  156. Sicuteri F, Ricci M, Monfardini R, Ficini M (1957) Experimental headache with endogeneous histamine; first results obtained by 48/80, a histamine-liberator drug, in the cephalic and peripheral circulatory systems of man. Physiol Asp Clin Neurol 11:188–192

    CAS  Google Scholar 

  157. Monro J, Carini C, Brostoff J (1984) Migraine is a food-allergic disease. Lancet 2:719–721

    Article  PubMed  CAS  Google Scholar 

  158. Smith JH, Butterfield JH, Cutrer FM (2011) Primary headache syndromes in systemic mastocytosis. Cephalalgia 31:1522–1531. https://doi.org/10.1177/0333102411421683

    Article  PubMed  Google Scholar 

  159. Bigal ME, Sheftell FD, Rapoport AM et al (2002) Chronic daily headache: identification of factors associated with induction and transformation. Headache 42:575–581. https://doi.org/10.1046/j.1526-4610.2002.02143.x

    Article  PubMed  Google Scholar 

  160. Schwartz LB (1987) Mediators of human mast cells and human mast cell subsets. Ann Allergy 58:226–235

    PubMed  CAS  Google Scholar 

  161. Theoharides TC, Alysandratos K-D, Angelidou A et al (2012) Mast cells and inflammation. Biochim Biophys Acta (BBA) - Mol Basis Dis 1822:21–33. https://doi.org/10.1016/j.bbadis.2010.12.014

    Article  CAS  Google Scholar 

  162. Gri G, Frossi B, D'Inca F et al (2012) Mast cell: an emerging partner in immune interaction. Front Immunol 3:120. https://doi.org/10.3389/fimmu.2012.00120

    Article  PubMed  PubMed Central  Google Scholar 

  163. Aich A, Feindel WH, Gupta K (2015) Mast cell-mediated mechanisms of nociception. Int J Mol Sci 16:29069–29092. https://doi.org/10.3390/ijms161226151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Perini F, D'Andrea G, Galloni E et al (2005) Plasma cytokine levels in migraineurs and controls. Headache 45:926–931. https://doi.org/10.1111/j.1526-4610.2005.05135.x

    Article  PubMed  Google Scholar 

  165. Sarchielli P, Alberti A, Baldi A et al (2006) Proinflammatory cytokines, adhesion molecules, and lymphocyte integrin expression in the internal jugular blood of migraine patients without aura assessed ictally. Headache 46:200–207. https://doi.org/10.1111/j.1526-4610.2006.00337.x

    Article  PubMed  Google Scholar 

  166. Rozen T, Swidan SZ (2007) Elevation of CSF tumor necrosis factor alpha levels in new daily persistent headache and treatment refractory chronic migraine. Headache 47:1050–1055. https://doi.org/10.1111/j.1526-4610.2006.00722.x

    Article  PubMed  Google Scholar 

  167. Ottosson A, Edvinsson L (1997) Release of histamine from dural mast cells by substance P and calcitonin gene-related peptide. Cephalalgia 17:166–174. https://doi.org/10.1046/j.1468-2982.1997.1703166.x

    Article  PubMed  CAS  Google Scholar 

  168. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M et al (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849:1–15

    Article  PubMed  CAS  Google Scholar 

  169. Groetzner P, Weidner C (2010) The human vasodilator axon reflex—an exclusively peripheral phenomenon? Pain 149:71–75. https://doi.org/10.1016/j.pain.2010.01.012

    Article  PubMed  CAS  Google Scholar 

  170. Tani E, Senba E, Kokumai S et al (1990) Histamine application to the nasal mucosa induces release of calcitonin gene-related peptide and substance P from peripheral terminals of trigeminal ganglion: a morphological study in the guinea pig. Neurosci Lett 112:1–6

    Article  PubMed  CAS  Google Scholar 

  171. Levy D, Burstein R, Kainz V et al (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130:166–176. https://doi.org/10.1016/j.pain.2007.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Levy D, Kainz V, Burstein R, Strassman AM (2012) Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 26:311–317. https://doi.org/10.1016/j.bbi.2011.09.016

    Article  PubMed  Google Scholar 

  173. Zhang X-C, Kainz V, Burstein R, Levy D (2011) Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. Pain 152:140–149. https://doi.org/10.1016/j.pain.2010.10.002

    Article  PubMed  CAS  Google Scholar 

  174. Zhang X-C, Levy D (2008) Modulation of meningeal nociceptors mechanosensitivity by peripheral proteinase-activated receptor-2: the role of mast cells. Cephalalgia 28:276–284. https://doi.org/10.1111/j.1468-2982.2007.01523.x

    Article  PubMed  PubMed Central  Google Scholar 

  175. Baun M, Pedersen MHF, Olesen J, Jansen-Olesen I (2012) Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia 32:337–345. https://doi.org/10.1177/0333102412439354

    Article  PubMed  Google Scholar 

  176. Pedersen SH, Ramachandran R, Amrutkar DV et al (2015) Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia 35:1287–1297. https://doi.org/10.1177/0333102415574846

    Article  PubMed  Google Scholar 

  177. Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095. https://doi.org/10.1126/science.1231897

    Article  PubMed  CAS  Google Scholar 

  178. Zhao J, Levy D (2015) Modulation of intracranial meningeal nociceptor activity by cortical spreading depression: a reassessment. J Neurophysiol 113:2778–2785. https://doi.org/10.1152/jn.00991.2014

    Article  PubMed  PubMed Central  Google Scholar 

  179. Boes T, Levy D (2012) Influence of sex, estrous cycle, and estrogen on intracranial dural mast cells. Cephalalgia 32:924–931. https://doi.org/10.1177/0333102412454947

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zaitsu M, Narita S-I, Lambert KC et al (2007) Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Mol Immunol 44:1977–1985. https://doi.org/10.1016/j.molimm.2006.09.030

    Article  PubMed  CAS  Google Scholar 

  181. Woller SA, Ravula SB, Tucci FC et al (2016) Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: the role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 56:271–280. https://doi.org/10.1016/j.bbi.2016.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Qi J, Buzas K, Fan H et al (2011) Painful pathways induced by TLR stimulation of dorsal root ganglion neurons. J Immunol 186:6417–6426. https://doi.org/10.4049/jimmunol.1001241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Lin J-J, Du Y, Cai W-K et al (2015) Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats. Sci Rep 5:12549. https://doi.org/10.1038/srep12549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Ohara K, Shimizu K, Matsuura S et al (2013) Toll-like receptor 4 signaling in trigeminal ganglion neurons contributes tongue-referred pain associated with tooth pulp inflammation. J Neuroinflammation 10:139. https://doi.org/10.1186/1742-2094-10-139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wei X, Melemedjian OK, DD-U A et al (2014) Dural fibroblasts play a potential role in headache pathophysiology. Pain 155:1238–1244. https://doi.org/10.1016/j.pain.2014.03.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Liu T, Gao Y-J, Ji R-R (2012) Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 28:131–144. https://doi.org/10.1007/s12264-012-1219-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Fazzari J, Linher-Melville K, Singh G (2017) Tumour-derived glutamate: linking aberrant cancer cell metabolism to peripheral sensory pain pathways. Curr Neuropharmacol 15:620–636. https://doi.org/10.2174/1570159X14666160509123042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Nicolodi M, Sicuteri F (1992) Chronic naloxone administration, a potential treatment for migraine, enhances morphine-induced miosis. Headache 32:348–352. https://doi.org/10.1111/j.1526-4610.1992.hed3207348.x

    Article  PubMed  CAS  Google Scholar 

  189. Centonze V, Brucoli C, Macinagrossa G et al (1983) Non-familial hemiplegic migraine responsive to naloxone. Cephalalgia 3:125–127. https://doi.org/10.1046/j.1468-2982.1983.0302125.x

    Article  PubMed  CAS  Google Scholar 

  190. Sicuteri F, Boccuni M, Fanciullacci M, Gatto G (1983) Naloxone effectiveness on spontaneous and induced perceptive disorders in migraine. Headache 23:179–183. https://doi.org/10.1111/j.1526-4610.1983.hed2304179.x

    Article  PubMed  CAS  Google Scholar 

  191. Lewis SS, Loram LC, Hutchinson MR et al (2012) (+)-Naloxone, an opioid-inactive Toll-like receptor 4 signaling inhibitor, reverses multiple models of chronic neuropathic pain in rats. J Pain 13:498–506. https://doi.org/10.1016/j.jpain.2012.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Hutchinson MR, Northcutt AL, Hiranita T (2012) Opioid activation of toll-like receptor 4 contributes to drug reinforcement. J Neurosci 32(33):11187–200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshni Ramachandran.

Additional information

This article is a contribution to the special issue on Neurogenic Inflammation - Guest Editors: Tony Yaksh and Anna Di Nardo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 40, 301–314 (2018). https://doi.org/10.1007/s00281-018-0676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-018-0676-y

Keywords

Navigation