Skip to main content

Advertisement

Log in

Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond

  • Key Note Lecture
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Here, in this review, we present our hypothesis of the migraine pathogenesis. We believe that migraine attacks derive from a top-down dysfunctional process that initiates in a hyperexcitable and hypoenergetic brain in the frontal lobe and downstream in abnormally activated nuclei of the pain matrix. This hypothesis derived from the results of the biochemical studies, mainly generated from our laboratory, on the possible metabolic shifts of tyrosine toward an activation of decarboxylase enzyme activity with an increased synthesis of traces amines, i.e. tyr, oct and syn, and an unphysiological synthesis of noradrenalin and dopamine. This metabolic shift is possibly favored by the reduced mitochondrial energy and high levels of glutamate in CNS of migraine patients. The unbalanced levels of neurotransmitters (DA and NE) and neuromodulators (tyr, oct and syn) in the synaptic dopaminergic and noradrenergic clefts of the pain matrix may activate, downstream, the trigeminal system that releases calcitonin gene-related G peptide. This induces the formation of an inflammatory soup, the sensitization of first trigeminal neuron and the migraine attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Launer LJ, Terwindt GM, Ferrari MD (1999) The prevalence and characteristics of migraine in a population based cohort: the GEM study. Neurology 53:537–542

    PubMed  CAS  Google Scholar 

  2. Welch KMA (1987) Migraine a biobehavioral disorder. Arch Neurol 44:323–327

    PubMed  CAS  Google Scholar 

  3. Skinner JE, Molnar M (1983) Event related extracellular potassium ions activity changes in the frontal cortex of conscious rat. J Neurophysiol 49:204–215

    PubMed  CAS  Google Scholar 

  4. Montagna P (2008) Migraine: a genetic disease? Neurol Sci 29(Suppl 1):S47–S51

    Article  PubMed  Google Scholar 

  5. Ziegler DK, Paolo AM (1995) Headache symptoms and psychological profile of headache-prone individuals: a comparison of clinic patients and controls. Arch Neurol 52:602–606

    PubMed  CAS  Google Scholar 

  6. D’Andrea G, Perini F, Terrazzino S, Nordera GP (2004) Contributions of biochemistry to the pathogenesis of primary headaches. Neurol Sci 3(Suppl 3):589–592

    Google Scholar 

  7. D’Andrea G, Cananzi AR, Ferro Milone F, JosephR GrunfeldS, Welch KMA (1989) Platelet levels of glutamate and aspartate in normal subjects. Stroke 20(2):299–300

    PubMed  Google Scholar 

  8. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  PubMed  CAS  Google Scholar 

  9. D’Andrea G, Nordera GP, Perini F, Allais G, Granella F (2007) Biochemistry of neuro-modulation in primary headaches: focus on tyrosine metabolism. Neurol Sci 28(Suppl 2):S94–S96

    Article  PubMed  Google Scholar 

  10. D’Andrea G, Terrazzino S, Fortin D, Cocco P, Balbi T (2003) Elusive amines and primary headaches: historical background and prospectives. Neurol Sci 24:S65–S67

    PubMed  Google Scholar 

  11. Axelrod J, Saavedra JM (1977) Octopamine. Nature 265:501–504

    Article  PubMed  CAS  Google Scholar 

  12. Sever PS (1979) False transmitters and migraine. Lancet 1(8111):333

    Article  PubMed  CAS  Google Scholar 

  13. Borowsky B, Adham N, Jones KA et al (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:933–941

    Article  Google Scholar 

  14. Berry DB (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271

    Article  PubMed  CAS  Google Scholar 

  15. (2004) The international classification of headache disorders. Cephalalgia 24:1–160

  16. Lashley KS (1941) Patterns of cerebral integration indicated by the scotomatas of migraine. Arch Neurol Psychiatry 46:331–339

    Google Scholar 

  17. Olesen J, Larsen B, Luritzen M (1981) Focal hyperemia followed by spreading olegimia an impaired activation of rCBF in classic migraine. Ann Neurol 9:344–352

    Article  PubMed  CAS  Google Scholar 

  18. Lauritzen M, Skyhoj E, Olesen J et al (1983) The role of spreading depression in acute brain disorders. Ann Neurol 14:569–572

    Article  PubMed  CAS  Google Scholar 

  19. Leao AAP (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  20. Cao Y, Welch KMA, Aurora S, Vikinsgtad EM (1999) Functional MRI-BOLD of visual triggered headache in patients with migraine. Arch Neurol 56:548–554

    Article  PubMed  CAS  Google Scholar 

  21. Welch KMA, D’Andrea G, Tepley N, Barkley G, Ramadan NM (1990) The concept of migraine as a state of central neuronal hyperexcitability. Neurol Clin 8:817–828

    PubMed  CAS  Google Scholar 

  22. Van Gelder N (1987) Calcium mobility and release associated with EEG abnormalities, migraine and epilepsy. In: Andermann F, Lugaresi E (eds) Migraine and epilepsy. Butterworths, Boston, pp 367–378

  23. Freeman M (2006) Reconsidering the effect of monosodium glutamate: a literature review. J Am Acad Nurse Pract 18(10):482–486

    Article  PubMed  Google Scholar 

  24. Mangano RM, Schwarcz R (1981) The human platelet as a model for the glutamatergic neuron. Platelet uptake of l-glutamate. J Neurochem 36(3):1067–1976

    Google Scholar 

  25. D’Andrea G, Cananzi AR, Joseph R, Morra M, Zamberaln F, Ferro Milone F, Grunfeld S, Welch KMA (1991) Platelet glycine, glutamate, and aspartate in primary headache. Cephalalgia 11:197–200

    Article  PubMed  Google Scholar 

  26. Ferrari MD, Odink J, Bos KD, Maleny MS, Bruin GW (1990) Neuroexcitatatory plasma amino acids are elevated in migraine. Neurology 40(10):1582–1586

    PubMed  CAS  Google Scholar 

  27. Cananzi AR, D’Andrea G, Perini F, Zamberaln F, Welch KMA (1995) Platelet plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia 15(2):132–135

    Article  PubMed  CAS  Google Scholar 

  28. Vaccaro M, Riva C, Tremolizzo L, Aliprandi A et al (2007) Platelet glutamate uptake and release on migraine with and without aura. Cephalalgia 27(1):35–40

    Article  PubMed  CAS  Google Scholar 

  29. Peres MF, Zukermann E, Senne Soares CA, Alonso EO, Santos BF, Faulhaber MH (2004) Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia 24(9):735–739

    Article  PubMed  CAS  Google Scholar 

  30. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50(4):1111–1114

    PubMed  CAS  Google Scholar 

  31. Khedr EM, Ahmed MA, Mohamed KA (2006) Motor and visual cortical excitability in migraineurs patients with and without aura: transcranial magnetic stimulation. Neurophysiol Clin 36(1):13–18

    Article  PubMed  Google Scholar 

  32. Schoenen J (2006) Neurophysiological features of the migrainous brain. Neurol Sci 27(Suppl 2):S77–S81

    Article  PubMed  Google Scholar 

  33. Ramadan NM, halvorson H, Vande-Linde A, Levine SR, helpern JA, Welch KM (1989) Low brain magnesium and migraine. Headache 29(7):416–419

    Article  PubMed  CAS  Google Scholar 

  34. Van Harreveld A (1984) The nature of chick’s magnesium sensitive retinal spreading depression. J Neurobiol 15:333–334

    Article  PubMed  Google Scholar 

  35. Lees G, Leach MJ (1993) Studies on the mechanism of action of novel anticonvulsant lamotrigine (lamictal) using primary neuroglia cultures from rat cortex. Brain Res 612:190–199

    Article  PubMed  CAS  Google Scholar 

  36. Leach MJ, Lees G, Riddall DR (1995) Lamotrigine. Mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS (eds) Antiepileptic drugs, 4th edn. Raven Press, New York, pp 851–859

    Google Scholar 

  37. D’Andrea G, Granella F, Cadaldini M, Manzoni GC (1999) Effectiveness of lamotrigine in the prophylaxis. Cephalalgia 19:64–66

    Article  PubMed  Google Scholar 

  38. Lampl C, Buzath A, Klinger D, Neumann K (1999) Lamotrigine in the prophylactic treatment of migraine with aura: a pilot study. Cephalalgia 19:58–63

    Article  PubMed  CAS  Google Scholar 

  39. Chen WT, Fuh JL, Wang SJ (2001) Persistent migrainous visual phenomena might be responsive to lamotrigine. Headache 41(8):823–825

    Article  PubMed  CAS  Google Scholar 

  40. Lampl C, Katsarava Z, Diener HC, Limmroth V (2005) Lamotrigine reduces migraine aura and migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry 76:1730–1732

    Google Scholar 

  41. D’Andrea G, Nordera GP, Allais G (2006) Treatment of the aura: solving the puzzle. Neurol Sci 27(Suppl 2):S96–S99

    Article  PubMed  Google Scholar 

  42. Steiner TJ, Findley LJ, Yuen AW (1997) Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia 17(2):109–112

    Article  PubMed  CAS  Google Scholar 

  43. Bogdanov VB, Multon S, Chauvel V, Bogdanova OV, Makarchuk MY, Schoenen J (2009) Cortical spreading depression and associated neuronal Fos expression in rats are affected differentially by chronic treatment with lamotrigine, valproate or riboflavin. Cephalalgia 29(Suppl 1):10

    Google Scholar 

  44. Griffin NJ, Ruggiero L, Lipton RB, Silberstein SD et al (2003) Premonitory symptoms in migraine: an electronic diary study. Neurology 60(6):935–940

    Google Scholar 

  45. Demarquay G, Royet JP, Giroud P, Chazot G, Valade D, Ryvlin P (2006) Rating of olfactory judgement in migraine patients. Cephalalgia 26:1123–1130

    Article  PubMed  CAS  Google Scholar 

  46. Denuelle M, Fabre N, Payoux P, Chollet F, Geroud G (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426

    PubMed  Google Scholar 

  47. Cologno D, Cicarelli G, Petretta V, D’Onofrio F, Bussne G (2008) High prevalence of dopaminergic premonitory symptoms in migraine patients with restless legs syndrome: a pathogenetic link? Neurol Sci 29(Suppl 1):S166–S168

    Google Scholar 

  48. D’Andrea G, Terrazzino S, Leon A, Fortin D, Perini F, Granella F, Bussone G (2204) Elevated levels of circulating trace amines in primary headaches. Neurology 62:1701–1705

    Google Scholar 

  49. D’Andrea G, Granella F, Leone M, Perini F, Farruggio A, Bussone G (2006) Abnormal platelet trace amine profiles in migraine with and without aura. Cephalalgia 26(8):968–972

    Article  PubMed  Google Scholar 

  50. Villalon CM, Olesen J (2009) The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther 124(3):309–323

    Article  PubMed  CAS  Google Scholar 

  51. Perini F, D’Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, Bussone G, Toso V (2005) Plasma cytokine levels in migraineurs and controls. Headache 45:926–931

    Article  PubMed  Google Scholar 

  52. D’Andrea G, Cananzi AR, Perini F, Hasselmark L (1995) Platelet models and their possible usefulness in the study of migraine pathogenesis. Cephalalgia 15(4):265–271

    Article  PubMed  Google Scholar 

  53. Fusayasu E, Kowa H, Takeshima T, Nasako K, Nakashima K (2007) Increased plasma substance P and CGRP levels, and high ACE activity in migraineurs during headache free periods. Pain 128(3):209–214

    Article  PubMed  CAS  Google Scholar 

  54. Bolay N, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferent in migraine model. Nat Med 8(2):136–142

    Article  PubMed  CAS  Google Scholar 

  55. Dalkara T, Zervas NT, Moskovitz MA (2006) From spreading depression to trigeminovascular system. Neurol Sci 27(Suppl 2):S86–S90

    Google Scholar 

  56. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra l, Borsok D (2008) Interictal dysfunction descending modulatory center in migraine patients. PLoS One 3(11):e3799

    Article  PubMed  Google Scholar 

  57. Fumal A, Laureys S, Di Clemente L, Boly M, Bohotin V, Vandenheede M, Coppola GL, Salmon E, Kupers R, Shoenen J (2006) Orbitofrontal cortex involvement in chronic analgesic-overuse headache evolving from episodic migraine. Brain 129:543–550

    Article  PubMed  Google Scholar 

  58. Welch KMA, Cao Y, Aurora SK, Wiggins G, Vikingstad EM (1998) MRI of the occipital cortex, red nucleus and substantia nigra during visual aura of migraine. Neurology 51:1465–1469

    PubMed  CAS  Google Scholar 

  59. Willer C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7): 658–660

    Google Scholar 

  60. Rudling EJ, Richardson J, Evans DP (2000) A comparison of agonist-specific coupling of cloned human α2-adrenoreceptors subtypes. Br J Pharmacol 131:933–941

    Article  PubMed  CAS  Google Scholar 

  61. Altier N, Stewart J (1999) The tachinin NK-1 receptor antagonist RP-67580, infused into Ventral tegmental area prevents stress-induced analgesia in the formalin test. Physiol Behav 66:717–721

    Article  PubMed  CAS  Google Scholar 

  62. D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A (2003) HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amines receptors in circulating leukocytes. Neurosci Lett 346(1–2):89–92

    Article  PubMed  Google Scholar 

  63. Danielson TJ, Boulton AA, Robertson HS (1977) m-Octopamine, p-octopamine and phenylethylamine in mammalian brain: a sensitive, specific assay anf effects of drugs. J Neurochem 29:1131–1135

    Article  PubMed  CAS  Google Scholar 

  64. D’Andrea G, Granella F, Perini F, Farruggio A, Leone M, Bussone G (2006) Platelet levels of dopamine are increased in migraine and cluster headache. Headache 46(4):585–591

    Article  PubMed  Google Scholar 

  65. Magos A, Brincat M, Zilkha KJ, Studd JW (1985) Serum dopamine β-hydroxylase activity in menstrual migraine. J Neurol Neurosurg Psychiatry 48(4):328–331

    Article  PubMed  CAS  Google Scholar 

  66. Gallai V, Gaiti A, Sarchielli P, Coata G, Trequattrini A, Paciaroni M (1992) Evidence for an altered dopamine β-hydroxylase activity in migraine and tension type headache. Acta Neurol Scand 86:403–446

    Article  PubMed  CAS  Google Scholar 

  67. D’Andrea G, Cananzi AR, Morra M, Fornasiero S, Zamberlan F, Welch KMA et al (1989) Platelet as model to test autonomic function in migraine. Funct Neurol 4(1):79–83

    PubMed  Google Scholar 

  68. Martignoni F, Blandini F, D’Andrea G et al (1990) Platelet and plasma catecholamines in migraine patients. Evidences of menstrual-related variability of the noradrenergic tone. Biogenic Amines 10:227–237

    Google Scholar 

  69. Nagel-Leiby S, D’Andrea G, Grunfeld S, Welch KMA (1990) Ovarian steroid levels in migraine with and without aura. Cephalalgia 10:147–152

    Article  PubMed  CAS  Google Scholar 

  70. Fernandez F, Lea RA, Colson NJ, Bellis C, Quinlan S, Griffits LR (2006) Association between a 19 bp deletion polymorphism at dopamine beta-hydroxylase (DBH) locus and migraine with aura. J Neurol Sci 251(1–2):118–123

    Article  PubMed  CAS  Google Scholar 

  71. Peres MFP, Sanchez del Rio M, seabra MLV, Tufik S, Abucham J, Cipolla-Neto J, Siberstein SD, Zuckermann E (2007) Hypothalamic involvement in chronic migraine. J Neurol Neurosurg Psychiatry 71:747–751

    Article  Google Scholar 

  72. Shimazu S, Miklya I (2004) Pharmacological studies with endogenous enhancer substances: Β-phenylethylamine, tryptamine, and their synthetic derivatives. Prog Neuropsychopharmacol Biol Psychiatry 28:421–427

    Article  PubMed  CAS  Google Scholar 

  73. Sicuteri F, Testi A, Anselmi B (1961) Biochemical investigations in headache: increase of hydroyindoleacetic acid excretion during migraine attack. Int Arch Allergy 19:265–271

    Article  Google Scholar 

  74. D’Andrea G, Hasselmark L, Cananzi AR, Alecci M, Perini F, Zamberlan F, Welch KMA (1995) Metabolism and menstrual cycle rhytmicity of serotonin in primary headaches. Headache 35(4):216–221

    Article  PubMed  Google Scholar 

  75. Fioroni L, D’Andrea G, Alecci M, Cananzi AR, Facchinetti F (1996) Platelet serotonin pathway in mestrual migraine. Cephalalgia 16(6):427–430

    Article  PubMed  CAS  Google Scholar 

  76. Andreou AP, Shields KG, Goadsby PJ (2009) GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis 37(2):314–323

    Google Scholar 

  77. Casucci G, Villani V, Frediani F (2008) Central Mechanism of action of antimigraine prophylactic drugs. Neurol Sci May 29(Suppl 1):S123–S126

    Article  Google Scholar 

  78. Welch KMA, Chabi E, Nell JH, Bartosh K, Achar VS, Meyer JS (1975) Cerebrospinal fluid gamma aminobutyric acid levels and migraine. Br Med J 3(5882):516–517

    Article  PubMed  CAS  Google Scholar 

  79. Joseph R, D’Andrea G, Grunfeld S, Welch KMA (1988) Cytosolic ionized calcium homeostasis in platelet: an abnormal sensitivity to PAF-activation in migraine. Headache 28(6):396–402

    Article  PubMed  CAS  Google Scholar 

  80. D’Andrea G, Welch KMA, Riddle JM, Grunfeld S, Joseph R (1989) Platelet serotonin metabolism and ultrastructure in migraine. Arch Neurol 46(11):1187–1189

    PubMed  Google Scholar 

  81. Joseph R, Welch KMA, Levine S, D’Andrea G (1986) ATP hyposecretion from platelet dense bodies—evidence for the purinergic hypothesis and a marker of migraine. Headache 26:403–410

    Article  PubMed  CAS  Google Scholar 

  82. D’Andrea G, Hasselmark L, Perini F, Alecci M, Cananzi AR, Welch KMA (1994) Platelet secretion from dense and alpha granules in vitro in migraine with and without aura. J Neurol Neurosurg Psychiatry 57(5):557–561

    Article  PubMed  Google Scholar 

  83. Sangiorgi S, Mochi M, Riva R, Cortelli P, Monari L, Pierangeli G, Montagna P (1994) Abnormal platelet mithocondrial function in patients affected by migraine with and without aura. Cephalalgia 14:31–230

    Article  Google Scholar 

  84. Welch KMA, Ramadan MN (1995) Mitochondria, magnesium and migraine. J Neurol Sci 134(1–2):9–14

    Google Scholar 

  85. Barbiroli B, Montagna P, Cortelli P, Funicello R, Iotti S, Monari L, Pierangeli G, Zaniol P, Lugaresi E (1992) Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42(6):12091214

    Google Scholar 

  86. Yang SP, Pau KY, Spies HG (1997) Gonadectomy alters tyrosine hydroxylase and norepinephrine transporter mRNA levels in the locus coeruleus of the rabbit. J Neuroendocrinol 9(10):763–768

    Article  PubMed  CAS  Google Scholar 

  87. Virmani A, Gaetani F, Imam S, Binienda Z, Ali S (2002) The protective role of l-carnitine against neurotoxicity evoked by drug abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann N Y Acad Sci 965:225–232

    Article  PubMed  CAS  Google Scholar 

  88. Balbi T, Fusco M, Vasapollo D, Boschetto R, Cocco P, Leon A, Farruggio A (2005) The presence of trace amines in postmortem cerebrospinal fluid in humans. J Forensic Sci 50(3):630–632

    Article  PubMed  CAS  Google Scholar 

  89. Welch KMA, Nagesh V, Aurora SK, Gelman N (2001) Periacqueductal gray matter dysfunction in migraine: cause or burden of illness? Headache 41:629–637

    Article  PubMed  CAS  Google Scholar 

  90. Welch KMA (2009) Iron in the migraine brain: a resilient hypothesis. Cephalalgia 29(3):283–285

    Article  PubMed  CAS  Google Scholar 

  91. Aridon P, D’Andrea G, Rigamonti A, Leone M, Casari G, Bussone G (2004) Elusive amines and cluster headache: mutational analysis of trace amine receptor cluster on chromosome 6q23. Neurol Sci 25(Suppl 3):S279–S280

    Article  PubMed  Google Scholar 

  92. David JC, Coulon JF (1985) Octopamine in invertebrates and vertebrates. Prog Neurobiol 24:141–185

    Article  PubMed  CAS  Google Scholar 

  93. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors from structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3):372–385

    Article  PubMed  CAS  Google Scholar 

  94. Prescot A, Becerra L, Pendse G, Tully S, Burstein R et al (2009) Excitatory neurotransmitters in brain regions in interictal migraine patients. Mol Pain 5:34

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D’Andrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Andrea, G., Leon, A. Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci 31 (Suppl 1), 1–7 (2010). https://doi.org/10.1007/s10072-010-0267-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0267-8

Keywords

Navigation