Skip to main content

Advertisement

Log in

MALAT1 lncRNA and Parkinson’s Disease: The role in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2022

This article has been updated

Abstract

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder. PD is characterized by progressive loss of dopamine-producing neurons in the substantia nigra (SN) region of brain tissue followed by the α-synuclein-based Lewy bodies’ formation. These conditions are manifested by various motor and non-motor symptoms such as resting tremor, limb rigidity, bradykinesia and posture instability, cognitive impairment, sleep disorders, and emotional and memory dysfunctions. Long non-coding RNAs (lncRNAs) are closely related to protein-coding genes and are involved in various biological processes. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) lncRNA is involved in different pathways, including alternative splicing, transcriptional regulation, and post-transcriptional regulation, and also interacts with RNAs as a miRNA sponge. MALAT1 is highly expressed in brain tissues and several lines of evidence suggested it is probably involved in synapse generation and other neurophysiological pathways. This narrative review discussed all aspects of MALAT1-associated mechanisms involved in the PD pathogenesis, i.e., perturbed α-synuclein homeostasis, apoptosis and autophagy, and neuro-inflammation. Lastly, the possible applications of MALAT1 as a diagnostic biomarker and its importance to developing therapeutic strategies were highlighted. The literature search was conducted using neurodegeneration, neurodegenerative disorders, Parkinson’s disease, lncRNA, and MALAT1 as search items in Google Scholar, Web of Knowledge, PubMed, and Scopus up to December 2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

Abbreviations

AD:

Alzheimer’s disease

AMP:

Adenosine monophosphate

ASO:

Specific antisense oligonucleotide

CSF:

Cerebro-spinal fluid

CNS:

Central nervous system

DAPK1:

Death-associated protein kinase1

EZH2:

Enhancer of zeste homolog 2

GPNMB:

Glycoprotein non-metastatic melanoma protein B

HD:

Huntington’s disease

HTR2A:

5-Hydroxytryptamine receptor 2A

IFN-γ:

Interferon-γ

IL:

Interleukin

lncRNA:

Long ncRNA

LPS:

Lipopolysaccharide

LRRK2:

Leucine-rich repeat kinase 2

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

mascRNA:

MALAT1-associated small cytoplasmic RNA

MPP+ :

Methyl-4-phenylpyridinium

MPTP:

1-Methyl–4-phenyl-1, 2, 3, 6-tetrahydropyridine

N2a:

Neuro 2A

nc-RNAs:

Non-coding RNAs

NEAT2:

Nuclear-enriched abundant transcript 2

NRF2:

Nuclear factor erythroid 2-related factor 2

NLGN1:

Neuroligin1

NLR:

NOD-like receptor

NLRP3:

NLR family pyrin domain containing 3

NS:

Nervous system

NSCLC:

Non-small-cell lung cancer

PD:

Parkinson’s disease

PRC2:

Polycomb repressive complex 2

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

SAA3:

Serum amyloid A3

SN:

Substantia nigra

SNCA:

Alpha-synuclein

sncRNA:

Small ncRNA

SNP:

Single nucleotide polymorphism

SynCAM1:

Synaptic cell adhesion molecule1

TH+ :

Tyrosine hydroxylase positive

TNF-α:

Tumor necrosis factor-α

References

  1. Xin C, Liu J (2021) Long Non-coding RNAs in Parkinson’s disease. Neurochem Res 1–12

    Article  CAS  Google Scholar 

  2. Rasheed M, Liang J, Wang C, Deng Y, Chen Z (2021) Epigenetic regulation of neuroinflammation in Parkinson’s disease. Int J Mol Sci 22(9):4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taghizadeh E, Gheibihayat SM, Taheri F, Afshani SM, Farahani N, Saberi A (2021) LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease. Neurol Sci 42(10):4007–4015

    Article  PubMed  Google Scholar 

  4. Tang Y, Meng L, Wan C-M, Liu Z-H, Liao W-H, Yan X-X et al (2017) Identifying the presence of Parkinson’s disease using low-frequency fluctuations in BOLD signals. Neurosci Lett 645:1–6

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T (2016) The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology 46(4):292–300

    Article  PubMed  Google Scholar 

  6. Rezaei O, Nateghinia S, Estiar MA, Taheri M, Ghafouri-Fard S (2021) Assessment of the role of non-coding RNAs in the pathophysiology of Parkinson’s disease. Eur J Pharmacol 173914

    Google Scholar 

  7. Recasens A, Perier C, Sue CM (2016) Role of microRNAs in the regulation of α-synuclein expression: a systematic review. Front Mol Neurosci 9:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6(6):65–74

    Article  Google Scholar 

  9. Devos D, Moreau C, Dujardin K, Cabantchik I, Defebvre L, Bordet R (2013) New pharmacological options for treating advanced Parkinson’s disease. Clin Ther 35(10):1640–1652

    Article  CAS  PubMed  Google Scholar 

  10. Lv Q, Wang Z, Zhong Z (2020) Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim SY, Lang AE (2010) The nonmotor symptoms of Parkinson’s disease—an overview. Mov Disord 25(S1):S123–S130

    Article  PubMed  Google Scholar 

  12. Wood LD, Neumiller JJ, Setter SM, Dobbins EK (2010) Clinical review of treatment options for select nonmotor symptoms of Parkinson’s disease. Am J Geriatr Pharmacother 8(4):294–315

    Article  CAS  PubMed  Google Scholar 

  13. Bonifati V (2014) Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism Relat Disord 20:S23–S28

    Article  PubMed  Google Scholar 

  14. Renani PG, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E et al (2019) Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson’s disease and epigenetic-based therapies. J Cell Physiol 234(11):19307–19319

    Article  CAS  PubMed  Google Scholar 

  15. Koros C, Simitsi A, Stefanis L (2017) Genetics of Parkinson’s disease: genotype–phenotype correlations. Int Rev Neurobiol 132:197–231

    Article  CAS  PubMed  Google Scholar 

  16. Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20(7):421–435

    Article  CAS  PubMed  Google Scholar 

  17. Nair VD, Ge Y (2016) Alterations of miRNAs reveal a dysregulated molecular regulatory network in Parkinson’s disease striatum. Neurosci Lett 629:99–104

    Article  CAS  PubMed  Google Scholar 

  18. Lyu Y, Bai L, Qin C (2019) Long noncoding RNAs in neurodevelopment and Parkinson’s disease. Animal models and experimental medicine 2(4):239–251

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andican G, Konukoglu D, Bozluolcay M, Bayülkem K, Firtiına S, Burcak G (2012) Plasma oxidative and inflammatory markers in patients with idiopathic Parkinson’s disease. Acta Neurol Belg 112(2):155–159

    Article  PubMed  Google Scholar 

  20. Capurro A, Bodea L-G, Schaefer P, Luthi-Carter R, Perreau VM (2015) Computational deconvolution of genome wide expression data from Parkinson’s and Huntington’s disease brain tissues using population-specific expression analysis. Front Neurosci 8:441

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schapira AH (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26(4):395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Hamblin MH, Yin K-J (2017) The long noncoding RNA Malat1: its physiological and pathophysiological functions. RNA Biol 14(12):1705–1714

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yin K-J, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 77:9–16

    Article  CAS  PubMed  Google Scholar 

  24. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440

    Article  CAS  PubMed  Google Scholar 

  26. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159

    Article  CAS  PubMed  Google Scholar 

  27. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D et al (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res 42(D1):D98–D103

    Article  CAS  PubMed  Google Scholar 

  28. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  29. Shen J, Siegel AB, Remotti H, Wang Q, Shen Y, Santella RM (2015) Exploration of deregulated long non-coding RNAs in association with hepatocarcinogenesis and survival. Cancers 7(3):1847–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grote P, Herrmann BG (2015) Long noncoding RNAs in organogenesis: making the difference. Trends Genet 31(6):329–335

    Article  CAS  PubMed  Google Scholar 

  32. Menon DU, Meller VH (2015) Identification of the Drosophila X chromosome: the long and short of it. RNA Biol 12(10):1088–1093

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kanduri C (2016) Long noncoding RNAs: lessons from genomic imprinting. Biochim Biophys Acta Gene Regul Mech 1859(1):102–11

    Article  CAS  Google Scholar 

  34. Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C et al (2012) Conceptual approaches for lncRNA drug discovery and future strategies. Expert Opin Drug Discov 7(6):503–513

    Article  CAS  PubMed  Google Scholar 

  35. Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA (2016) Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci 113(49):14013–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA (2016) Hoogsteen-position pyrimidines promote the stability and function of the MALAT1 RNA triple helix. RNA 22(5):743–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Y, Li Y, Yang H, Guo J, Li N (2021) Circulating microRNAs and long non-coding RNAs as potential diagnostic biomarkers for Parkinson’s disease. Front Mol Neurosci 14

    PubMed  PubMed Central  Google Scholar 

  38. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci 105(2):716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khorkova O, Hsiao J, Wahlestedt C (2015) Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev 87:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  41. Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci ÇB (2016) The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 43(11):1193–1204

    Article  CAS  PubMed  Google Scholar 

  42. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H et al (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10(3):e1003517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhou Y, Gu C, Li J, Zhu L, Huang G, Dai J et al (2018) Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat 14:3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13(8):528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakrabarti S, Mohanakumar KP (2016) Aging and neurodegeneration: a tangle of models and mechanisms. Aging Dis 7(2):111

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ghanam A, Xu Q, Ke S, Azhar M, Cheng Q, Song X (2017) Shining the light on senescence associated LncRNAs. Aging Dis 8(2):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329–338

    Article  CAS  PubMed  Google Scholar 

  48. Soreq L, Salomonis N, Guffanti A, Bergman H, Israel Z, Soreq H (2015) Whole transcriptome RNA sequencing data from blood leukocytes derived from Parkinson’s disease patients prior to and following deep brain stimulation treatment. Genomics Data 3:57–60

    Article  PubMed  Google Scholar 

  49. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H et al (2012) Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192(3):1133–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang T-H, Liang L-Z, Liu X-L, Wu J-N, Su K, Chen J-Y et al (2017) Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1 retraction in/10.3892/or.2018.6688. Oncol Rep 37(4):2087–2094

    Article  PubMed  CAS  Google Scholar 

  52. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8(1):1–16

    Article  CAS  Google Scholar 

  53. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X et al (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9(3):e1003368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt LH, Spieker T, Koschmieder S, Humberg J, Jungen D, Bulk E et al (2011) The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol 6(12):1984–1992

    Article  PubMed  Google Scholar 

  56. Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC (2021) Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 188502

    Google Scholar 

  57. Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y et al (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584(22):4575–4580

    Article  CAS  PubMed  Google Scholar 

  58. Wilusz JE (2016) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta Gene Regul Mech 1859(1):128–138

    Article  CAS  Google Scholar 

  59. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135(5):919–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres JF (2012) DGCR8 HITS-CLIP reveals novel functions for the microprocessor. Nat Struct Mol Biol 19(8):760–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu B, Shan G (2016) Functions of long noncoding RNAs in the nucleus. Nucleus 7(2):155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Eißmann M, Gutschner T, Hämmerle M, Günther S, Caudron-Herger M, Groß M et al (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9(8):1076–1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34(2):142–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yao J, Wang XQ, Li YJ, Shan K, Yang H, Wang YNZ et al (2022) Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol Med 14(3):e15623

    Article  CAS  Google Scholar 

  65. Kryger R, Fan L, Wilce PA, Jaquet V (2012) MALAT-1, a non protein-coding RNA is upregulated in the cerebellum, hippocampus and brain stem of human alcoholics. Alcohol 46(7):629–634

    Article  CAS  PubMed  Google Scholar 

  66. Theo F, Kraus J, Haider M, Spanner J, Steinmaurer M, Dietinger V et al (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease–a preliminary report. Mol Neurobiol 54(4):2869

    Article  CAS  Google Scholar 

  67. Zhang Q-S, Wang Z-H, Zhang J-L, Duan Y-L, Li G-F, Zheng D-L (2016) Beta-asarone protects against MPTP-induced Parkinson’s disease via regulating long non-coding RNA MALAT1 and inhibiting α-synuclein protein expression. Biomed Pharmacother 83:153–159

    Article  CAS  PubMed  Google Scholar 

  68. Xia D, Sui R, Zhang Z (2019) Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J Cell Biochem 120(4):4942–4951

    Article  CAS  PubMed  Google Scholar 

  69. Bennett MC (2005) The role of α-synuclein in neurodegenerative diseases. Pharmacol Ther 105(3):311–331

    Article  CAS  PubMed  Google Scholar 

  70. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S et al (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14(8):855–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C et al (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141(7):2181–2193

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bengoa-Vergniory N, Roberts RF, Wade-Martins R, Alegre-Abarrategui J (2017) Alpha-synuclein oligomers: a new hope. Acta Neuropathol 134(6):819–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 10(11):1015–1025

    Article  CAS  PubMed  Google Scholar 

  74. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  PubMed  Google Scholar 

  76. Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z et al (2013) The role of autophagy in Parkinson’s disease: rotenone-based modeling. Behav Brain Funct 9(1):1–12

    Article  CAS  Google Scholar 

  77. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2(4):a009357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhang L, Dong Y, Xu X, Xu Z (2012) The role of autophagy in Parkinson’s disease. Neural Regen Res 7(2):141

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gong X, Wang H, Ye Y, Shu Y, Deng Y, He X et al (2016) miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson’s disease. Am J Transl Res 8(5):2127

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y (2017) Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell Biosci 7(1):1–9

    Article  CAS  Google Scholar 

  81. Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z (2020) LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s disease. J Cell Biochem 121(12):4838–4848

    Article  CAS  Google Scholar 

  82. Chen Q, Huang X, Li R (2018) lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res 10(2):563

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zeng R, Luo D-X, Li H-P, Zhang Q-S, Lei S-S, Chen J-H (2019) MicroRNA-135b alleviates MPP+-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis. J Clin Neurosci 65:125–133

    Article  CAS  PubMed  Google Scholar 

  84. Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ (2018) The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol Dis 120:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murthy MN, Blauwendraat C, Guelfi S, Hardy J, Lewis PA, Trabzuni D (2017) Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson’s disease on chromosome 7p15. 3. Neurogenetics 18(3):121–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H (2021) Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol Res 54

    PubMed  PubMed Central  Google Scholar 

  87. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    Article  CAS  PubMed  Google Scholar 

  88. Joshi N, Singh S (2018) Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 96(3):379–390

    Article  CAS  PubMed  Google Scholar 

  89. Kabra A, Sharma R, Kabra R, Baghel US (2018) Emerging and alternative therapies for Parkinson disease: an updated review. Curr Pharm Des 24(22):2573–2582

    Article  CAS  PubMed  Google Scholar 

  90. He Q, Wang Q, Yuan C, Wang Y (2017) Downregulation of miR-7116-5p in microglia by MPP+ sensitizes TNF-α production to induce dopaminergic neuron damage. Glia 65(8):1251–1263

    Article  PubMed  Google Scholar 

  91. Wang S, Yuan Y-H, Chen N-H, Wang H-B (2019) The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol 67:458–464

    Article  CAS  PubMed  Google Scholar 

  92. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35(9):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT 1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19(6):1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ding Y, Guo F, Zhu T, Li J, Gu D, Jiang W et al (2018) Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int J Mol Med 41(1):446–454

    CAS  PubMed  Google Scholar 

  95. Cai L-J, Tu L, Huang X-M, Huang J, Qiu N, Xie G-H et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):1–15

    Article  CAS  Google Scholar 

  96. Yang H (2021) LncRNA MALAT1 potentiates inflammation disorder in Parkinson’s disease. Int J Immunogenet 48(5):419–428

    Article  CAS  PubMed  Google Scholar 

  97. Yoon J-H, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425(19):3723–3730

    Article  CAS  PubMed  Google Scholar 

  98. Arun G, Diermeier S, Akerman M, Chang K-C, Wilkinson JE, Hearn S et al (2016) Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 30(1):34–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, drafting the article or revising it critically for important intellectual content, and approval of the final version. MA contributed in preparing table and writing the manuscript. MJ designed and contributed to the preparation of the figure and manuscript. MR revised the article.

Corresponding author

Correspondence to M. S. Jalali.

Ethics declarations

Ethics Approval

This is a review article. There is not ethical approval applicable.

Consent to Participate

Not applicated.

Consent for Publication

This is a review article. There is no consent to publish applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrishamdar, M., Jalali, M.S. & Rashno, M. MALAT1 lncRNA and Parkinson’s Disease: The role in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches. Mol Neurobiol 59, 5253–5262 (2022). https://doi.org/10.1007/s12035-022-02899-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02899-z

Keywords

Navigation