Skip to main content
Log in

Altered Long Noncoding RNA Expression Precedes the Course of Parkinson’s Disease—a Preliminary Report

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a slowly progressing neurodegenerative disorder that affects approximately seven million patients worldwide. Despite intensive research, the molecular mechanisms initiating and promoting PD are still unknown. However, it is assumed that environmental factors trigger PD. Recent research demonstrated that long noncoding RNAs (lncRNA) interfere in transcriptional and translational processes modulating gene expression reflecting environmental influences. Nevertheless, there is no systematic analysis available that investigates the impact of lncRNAs on PD. In the current study, we performed a comprehensive analysis on expression levels of 90 well-annotated lncRNAs in 30 brain specimens deriving from 20 PD patients and 10 controls as a preliminary report on the significance of lncRNAs in PD. Expression profiling of lncRNAs revealed that five lncRNAs are significantly differentially expressed in PD. While H19 upstream conserved 1 and 2 is significantly downregulated in PD, lincRNA-p21, Malat1, SNHG1, and TncRNA are significantly upregulated. An analysis on expression levels and PD stages revealed that the identified dysregulated lncRNA are altered already in early disease stage and that they precede the course of PD. In summary, this is the first comprehensive analysis on lncRNAs in PD revealing significantly altered lncRNAs. Additionally, we found that lncRNA dysregulations precede the course of the disease. Thus, the five newly identified lncRNAs may serve as potential new biomarkers appropriate even in early PD. They may be used in monitoring disease progression and they may serve as potential new targets for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  PubMed  Google Scholar 

  2. Noyce AJ et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72:893–901. doi:10.1002/ana.23687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Maele-Fabry G, Hoet P, Vilain F, Lison D (2012) Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ Int 46:30–43. doi:10.1016/j.envint.2012.05.004

    Article  PubMed  Google Scholar 

  4. Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563. doi:10.1126/science.1112014

    Article  CAS  PubMed  Google Scholar 

  5. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi:10.1101/gr.132159.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21:93–102. doi:10.1016/j.tig.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  7. Mattick JS (2009) The genetic signatures of noncoding RNAs. PLoS Gen 5, e1000459. doi:10.1371/journal.pgen.1000459

    Article  Google Scholar 

  8. Bu D et al (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215. doi:10.1093/nar/gkr1175

    Article  CAS  PubMed  Google Scholar 

  9. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10

  10. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF (2009) RNA regulation of epigenetic processes. BioEssays 31:51–59. doi:10.1002/bies.080099

    Article  CAS  PubMed  Google Scholar 

  11. Carrel L et al (1996) X inactivation analysis and DNA methylation studies of the ubiquitin activating enzyme E1 and PCTAIRE-1 genes in human and mouse. Hum Mol Genet 5:391–401

    Article  CAS  PubMed  Google Scholar 

  12. Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    Article  CAS  PubMed  Google Scholar 

  13. Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323. doi:10.1016/j.cell.2013.02.016

    Article  CAS  PubMed  Google Scholar 

  14. Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Gen 21:400–404. doi:10.1038/7734

    Article  CAS  Google Scholar 

  15. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137. doi:10.1038/379131a0

    Article  CAS  PubMed  Google Scholar 

  16. Zhao J et al (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40:939–953. doi:10.1016/j.molcel.2010.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756. doi:10.1126/science.1163045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–1551. doi:10.1016/j.cell.2013.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian D, Sun S, Lee JT (2010) The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403. doi:10.1016/j.cell.2010.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nie L et al (2012) Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 4:127–150

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discovery 1:391–407. doi:10.1158/2159-8290.CD-11-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schonrock N, Gotz J (2012) Decoding the non-coding RNAs in Alzheimer’s disease. Cell Mol Life Sci 69:3543–3559. doi:10.1007/s00018-012-1125-z

    Article  CAS  PubMed  Google Scholar 

  23. McKeith IG et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872. doi:10.1212/01.wnl.0000187889.17253.b1

    Article  CAS  PubMed  Google Scholar 

  24. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762. doi:10.1016/j.neurobiolaging.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  25. Wagner M et al (2015) Age-Dependent Levels of 5-Methyl-, 5-Hydroxymethyl-, and 5-Formylcytosine in Human and Mouse Brain Tissues. Angew Chem. doi:10.1002/anie.201502722

    Google Scholar 

  26. Kraus TF, Greiner A, Guibourt V, Kretzschmar HA (2014) Long non-coding RNA normalisers in human brain tissue. J Neural Transm. doi:10.1007/s00702-014-1352-6

    Google Scholar 

  27. Kraus TF, Greiner A, Guibourt V, Lisec K, Kretzschmar HA (2015) Identification of stably expressed lncRNAs as valid endogenous controls for profiling of human glioma. J Cancer 6:111–119. doi:10.7150/jca.10867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151. doi:10.1093/nar/gkq1138

    Article  CAS  PubMed  Google Scholar 

  29. Tang L, Zhang W, Su B, Yu B (2013) Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res Intern 2013:251098. doi:10.1155/2013/251098

    Google Scholar 

  30. Tan L, Yu JT, Hu N, Tan L (2013) Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 47:382–393. doi:10.1007/s12035-012-8359-5

    Article  CAS  PubMed  Google Scholar 

  31. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A (2013) Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 97:69–80. doi:10.1016/j.brainresbull.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  32. Barry G (2014) Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry 19:410–416. doi:10.1038/mp.2013.196

    Article  CAS  PubMed  Google Scholar 

  33. Barry G et al (2014) The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19:486–494. doi:10.1038/mp.2013.45

    Article  CAS  PubMed  Google Scholar 

  34. van de Vondervoort II et al (2013) Long non-coding RNAs in neurodevelopmental disorders. Front Mol Neurosci 6:53. doi:10.3389/fnmol.2013.00053

    PubMed  PubMed Central  Google Scholar 

  35. Ziats MN, Rennert OM (2013) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49:589–593. doi:10.1007/s12031-012-9880-8

    Article  CAS  PubMed  Google Scholar 

  36. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  37. Abdel Nour AM, Azhar E, Damanhouri G, Bustin SA (2014) Five years MIQE guidelines: the case of the Arabian countries. PLoS One 9, e88266. doi:10.1371/journal.pone.0088266

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  39. Gao Q et al (2008) Selection of reference genes for real-time PCR in human hepatocellular carcinoma tissues. J Cancer Res Clin Oncol 134:979–986. doi:10.1007/s00432-008-0369-3

    Article  CAS  PubMed  Google Scholar 

  40. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9:53. doi:10.1186/1471-2199-9-53

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berteaux N et al (2008) A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol 28:6731–6745. doi:10.1128/MCB.02103-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drewell RA, Arney KL, Arima T, Barton SC, Brenton JD, Surani MA (2002) Novel conserved elements upstream of the H19 gene are transcribed and act as mesodermal enhancers. Development 129:1205–1213

    CAS  PubMed  Google Scholar 

  43. Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC (2015) Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 6, e1700. doi:10.1038/cddis.2015.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernard D et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093. doi:10.1038/emboj.2010.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. You J et al (2014) Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer. Indian J Cancer 51(Suppl 3):e99–e102. doi:10.4103/0019-509X.154092

    Article  PubMed  Google Scholar 

  46. Yu F et al (2015) p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA. PLoS One 10, e0129190. doi:10.1371/journal.pone.0129190

    Article  PubMed  PubMed Central  Google Scholar 

  47. Adamsen BL, Kravik KL, Clausen OP, De Angelis PM (2007) Apoptosis, cell cycle progression and gene expression in TP53-depleted HCT116 colon cancer cells in response to short-term 5-fluorouracil treatment. Int J Oncol 31:1491–1500

    CAS  PubMed  Google Scholar 

  48. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39. doi:10.1186/1471-2164-8-39

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Neurobiobank Munich (Thomas Arzberger) for providing human brain tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo F. J. Kraus.

Ethics declarations

Funding

This work was supported by the German Federal Ministry of Education and Research (BMBF) through the EpiPD (Epigenomics of Parkinson’s disease) project, under the auspices of the bilateral BMBF/ANR (French National Research Agency) Epigenomics of Common and Age-related Diseases Programme (grant no. 01KU1403B to TFJK and HAK) and by the BMBF through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the e:Med Programme (grant no. 01ZX1314I to TFJK and HAK).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Overview on the expression stability of all 90 analysed lncRNAs. Indicated are stability values, intragroup and intergroup variations as calculated using the NormFinder algorithm. Stability values of ≤ 0.009 and CT values of ≤ 32 are indicated in grey. Only the 3 lncRNAs GAS5-family, HAR1B and SNHG4 that are indicated in grey fulfill the requirements of valid normalisers. (XLSX 18 kb)

Table S2

Relative expression levels of lncRNAs. Indicated are the relative expression levels of 87 unstably expressed lncRNAs as calculated using the comparative CT method. As references, we used the three stably expressed lncRNAs GAS5-family, HAR1B and SNHG4. Only 5 lncRNAs showed significant expression differences with p-values of < 0.05 (indicated in grey) in PD compared with controls: H19 upstream conserved 1 and 2, lincRNA-p21, Malat1, SNHG1, and TncRNA (indicated in grey). (XLSX 17 kb)

Table S3

Expression levels of candidate lncRNAs in PD stages. Classifying PD cases according to McKeith enables us to perform PD stage dependent analysis. Indicated are mean relative expression levels of the 5 identified candidate lncRNAs H19 upstream conserved 1 and 2, lincRNA-p21, Malat1, SNHG1, and TncRNA in controls, brain stem type PD, limbic type PD and neocortical type PD. (XLSX 9 kb)

Figure S1

Stably expressed lncRNAs. Indicated are the expression levels of the 3 identified valid lncRNA normalisers GAS5-family, HAR1B and SNHG4. Displayed are the CT values. Indicated are mean and SEM. (GIF 719 kb)

High resolution image (TIF 516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, T.F.J., Haider, M., Spanner, J. et al. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson’s Disease—a Preliminary Report. Mol Neurobiol 54, 2869–2877 (2017). https://doi.org/10.1007/s12035-016-9854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9854-x

Keywords

Navigation