Skip to main content

Advertisement

Log in

LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is known as one of the most common degenerative disorders related to the damage of the central nervous system (CNS). This brain disorder is also characterized by the formation of Lewy bodies in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta (SNc), which consequently leads to motor and non-motor symptoms. With regard to the growing trend in the number of cases with PD and its effects on individuals, families, and communities, immediate treatments together with diagnostic methods are required. In this respect, long non-coding ribonucleic acids (lncRNAs) represent a large class of ncRNAs with more than 200 nucleotides in length, playing key roles in some important processes including gene expression, cell differentiation, genomic imprinting, apoptosis, and cell cycle. They are highly expressed in the CNS and previous studies have further reported that the expression profile of lncRNAs is disrupted in human diseases such as neurodegenerative disorders. Since the levels of some lncRNAs change over time in the brains of patients with PD, a number of previous studies have examined their potentials as biomarkers for this brain disorder. Therefore, the main purpose of this study was to review the advances in the related literature on lncRNAs as diagnostic, therapeutic, and prognostic biomarkers for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from Ying Lyu et al. (2019). The functions of lncRNAs involved in the regulation of several processes at different levels, including (1) transcription, (2) post-transcription, and (3) interaction with other biological molecules

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

CNS:

Central nervous system

SNc:

Substantia nigra pars compacta

SNCA:

Alpha-synuclein

LRRK2:

Leucine-rich repeat kinase 2

RNA:

Ribonucleic acid

lncRNA:

Long non-coding RNA

HD:

Huntington’s disease

AD:

Alzheimer’s disease

NEAT1:

Nuclear enriched assembly transcript 1

SNHG1:

Small nucleolar RNA host gene 1

HTR2A:

5-Hydroxytryptamine receptor 2A

NOD:

Nucleotide-binding domain

UCA1:

Urothelial carcinoma-associated 1

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

lincRNA-p21:

Long intergenic non-coding RNA p21

HIF1α:

Hypoxia-inducible factor 1 subunit alpha

linc-POU3F3:

Long intergenic non-coding RNA POU3F3

L1CAM:

L1 cell adhesion molecule

GCase:

Glucocerebrosidase

miR-15a-5p:

MicroRNA-15a-5p

C57BL/6:

C57 black 6

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

CASP3:

Caspase-3

NGF:

Neuronal growth factor

BDNF:

Brain-derived neurotrophic factor

IL-1β:

Interleukin 1 beta

TNF-α:

Tumor necrosis factor alpha

PI3K:

Phosphatidylinositol 3-kinase;

AKT:

Protein kinase B

IκBα:

Inhibitor of nuclear factor kappa B

UCHL1:

Ubiquitin carboxy-terminal hydrolase L1

NURR1:

Nuclear receptor-related 1 protein

AS:

Antisense

BACE1:

β-Site amyloid precursor protein cleaving enzyme 1

iNOS:

Inducible nitric oxide synthase

MAP1LC3:

Microtubule-associated protein 1 light chain 3

PINK1:

PTEN-induced kinase 1

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

LDH:

Lactate dehydrogenase

SOD:

Superoxide dismutase

RNAi:

RNA interference

ASO:

AS oligonucleotide

HOTAIR:

HOX transcript AS intergenic RNA

NLRP3:

NOD-like receptor protein 3

N2a:

Neuro 2A

NRF2:

Nuclear factor (erythroid-derived 2)-like-2 factor

EZH2:

Enhancer of zeste homolog 2

PRC2:

Polycomb repressive complex 2

LRRK2:

Leucine-rich repeat kinase

References

  1. Pringsheim T, Jette N, Frolkis A, Steeves T (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis

  2. Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35

    Article  CAS  PubMed  Google Scholar 

  3. Bonifati V (2014) Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism Relat Disord 20:S23

    Article  PubMed  Google Scholar 

  4. Renani P, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E et al (2019) Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson’s disease and epigenetic-based therapies. J Cell Physiol 234(11):19307

    Article  CAS  PubMed  Google Scholar 

  5. Bradaric BD, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119(1):59

    Article  Google Scholar 

  6. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368

    Article  CAS  PubMed  Google Scholar 

  7. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quinn J, Chang H (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47

    Article  CAS  PubMed  Google Scholar 

  10. Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV (2013) The vast, conserved mammalian lincRNome. PLoS Comput Bio. 9(2).

  11. Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10(4):632–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadakkuzha BM, Liu X-A, McCrate J, Shankar G, Rizzo V, Afinogenova A, et al. (2015) Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci; 9

  13. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet;5(8):e1000617-e.

  14. Zhou Y, Gu C, Li J, Zhu L, Huang G, Dai J et al (2018) Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat 14:3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat rev Neurosci 13(8):528

  16. Schapira AH (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26(4):395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6(6):309–317

    Article  CAS  PubMed  Google Scholar 

  18. Bonanni L, Thomas A, Onofrj M (2006) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 66(9):1455 (author reply)

  19. Kraus T, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar H (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report. Mol Neurobiol 54(4):2869

    Article  CAS  PubMed  Google Scholar 

  20. Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Bio 10(3)

  21. Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020

  22. You J, Fang N, Gu J, Zhang Y, Li X, Zu L et al (2014) Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer. Indian Journal cancer. 51:e99

  23. Hall J, Messenger Z, Tam H, Phillips S, Recio L, Smart R (2015) Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death & Dis. 6(3):e1700

  24. Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A (2020) Long noncoding RNA POU3F3 and α-synuclein in plasma L1CAM exosomes combined with β-glucocerebrosidase activity: potential predictors of Parkinson’s disease. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics

  25. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C et al (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020

  27. Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto G, Hayat S et al (2019) Cellular and molecular aspects of Parkinson treatment: future therapeutic perspectives. Mol Neurobiol 56(7):4799

    Article  CAS  PubMed  Google Scholar 

  28. Fonseca-Ornelas L, Eisbach S, Paulat M, Giller K, Fernández C, Outeiro T et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun 5:5857

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Lian Y, Ma Y, Wu C, Zheng Y, Xie N (2018) LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 68:212

    Article  CAS  PubMed  Google Scholar 

  30. Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radical Biol Med 63:1–29

    Article  CAS  Google Scholar 

  31. Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329–338

    Article  CAS  PubMed  Google Scholar 

  32. Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329

    Article  CAS  PubMed  Google Scholar 

  33. Wen J, Ma Y, Yang G, Wang G (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498

    PubMed  Google Scholar 

  34. Wang Y, Chen W, Yang C, Wu W, Wu S, Qin X et al (2012) Long non-coding RNA UCA1a (CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41(1):276

    CAS  PubMed  Google Scholar 

  35. Lu M, Sun W, Shen J, Wei M, Chen B, Qi Y et al (2018) LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmacol Sci 22(22):7908

    CAS  PubMed  Google Scholar 

  36. Cai L, Tu L, Li T, Yang X, Ren Y, Gu R et al (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int immunopharmacology. 75:105734

  37. Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y et al (2009) Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc Natl Acad Sci USA 106(12):4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grimes D, Han F, Panisset M, Racacho L, Xiao F, Zou R et al (2006) Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov dis: offic J Mov Dis Soc 21(7):906

  39. Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775–788

    Article  CAS  PubMed  Google Scholar 

  40. Gong B, Cao Z, Zheng P, Vitolo O, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775

    Article  CAS  PubMed  Google Scholar 

  41. Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, et al (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9

  42. Riva P, Ratti A, Venturin M (2016) The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 13(11):1219

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Fang J, Zhou Z, Zhou Q, Sun S, Jin Z, et al (2020) Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle (Georgetown, Tex) 1–14

  44. Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17(9):802

  45. Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods in molecular biology (Clifton, NJ) 445:77

    Article  CAS  Google Scholar 

  46. Xie S, Zhou F, Li J, Duan S (2019) NEAT1 regulates MPP+-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci lett. 708:134340

  47. Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER et al (2019) NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 33(10):11223–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan W, Chen Z, Chen J, Chen H (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019

    Article  CAS  PubMed  Google Scholar 

  49. Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H et al (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584(6):1073

    Article  CAS  PubMed  Google Scholar 

  50. Li L, Xu J, Wu M, Hu J (2018) Protective role of microRNA-221 in Parkinson’s disease. Bratisl Lek Listy 119(1):22

    CAS  PubMed  Google Scholar 

  51. Geng L, Zhao J, Liu W, Chen Y (2019) Knockdown of NEAT1 ameliorated MPP+-induced neuronal damage by sponging miR-221 in SH-SY5Y cells. RSC Adv 9(43):25257–25265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu X, Cui L, Zhong W, Cai Y (2020) Autophagy-associated lncRNAs: promising targets for neurological disease diagnosis and therapy. Neural Plast

  53. Boros F, Maszlag-Török R, Vécsei L, Klivényi P (2020) Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain res. 1730:146672

  54. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Cui B, Dai Z, Shi P, Wang Z, Guo Y (2016) Long non-coding RNA HOTAIR promotes Parkinson’s disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res 13(2):115

    Article  CAS  PubMed  Google Scholar 

  56. Zhou F, Xie S, Li J, Duan S (2019) Long noncoding RNA HOTAIR promotes cell apoptosis by sponging miR-221 in Parkinson’s disease. RSC Adv 9(51):29502–29510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S et al (2020) HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson’s disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY) 12(9):7660

    Article  CAS  Google Scholar 

  58. Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell mol neurobiol.

  59. Lin Q, Hou S, Dai Y, Jiang N, Lin Y (2019) LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 400(9):1217

    Article  CAS  PubMed  Google Scholar 

  60. Yang L, Zhang X, Li H, Liu J (2016) The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol BioSyst 12(8):2605

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. (2020) LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cellular and Molecular Neurobiology:1–14

  62. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bennett M (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105(3):311

    Article  CAS  PubMed  Google Scholar 

  64. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S et al (2015) Targeting α-synuclein for treating Parkinson’s disease: mechanistic and therapeutic considerations. The Lancet Neurology 14(8):855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai L-J, Tu L, Huang X-M, Huang J, Qiu N, Xie G-H et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, et al. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson’s Disease 3

  67. Gureev A, Popov V (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44(10):2273

    Article  CAS  PubMed  Google Scholar 

  68. Okorji U, Velagapudi R, El-Bakoush A, Fiebich B, Olajide O (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426

    Article  CAS  PubMed  Google Scholar 

  69. Chen Q, Huang X, Li R (2018) lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Trans Res 10(2):563

  70. Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Experimental neurology 206

  71. Imai Y, Gehrke S, Wang H-Q, Takahashi R, Hasegawa K, Oota E et al (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27(18):2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee B, Shin J, VanKampen J, Petrucelli L, West A, Ko H et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y (2017) Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell & Bioscience 7

  74. Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci ÇB (2016) The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 43(11):1193–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea development: Eskandar Taghizadeh; literature search: Eskandar Taghizadeh and Forough Taheri; drafting: Seyed Mohammad Gheibihayat and Mohammadreza Afshani; critical revisions: Alihossein Saberi.

Corresponding authors

Correspondence to Eskandar Taghizadeh or Alihossein Saberi.

Ethics declarations

Ethical approval

None.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh, E., Gheibihayat, S.M., Taheri, F. et al. LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease. Neurol Sci 42, 4007–4015 (2021). https://doi.org/10.1007/s10072-021-05408-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05408-7

Keywords

Navigation