Skip to main content
Log in

Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biotransformation of wasted feathers via feather-degrading enzyme has gained immense popularity, low conversion efficiency hinders its scale application, and the main purpose of this study is to improve feather-degrading enzyme production in Bacillus licheniformis. Firstly, keratinase from Bacillus amyloliquefaciens K11 was attained with the best performance for feather hydrolysis, via screening several extracellular proteases from Bacillus; also, feather powder was proven as the most suitable substrate for determination of feather-degrading enzyme activity. Then, expression elements, including signal peptides and promoters, were optimized, and the combination of signal peptide SPSacC with promoter Pdual3 owned the best performance, keratinase activity aggrandized by 6.21-fold. According to amino acid compositions of keratinase and feeding assays, Ala, Val, and Ser were proven as critical precursors, and strengthening these precursors’ supplies via metabolic pathway optimization resulted in a 33.59% increase in the keratinase activity. Furthermore, keratinase activity reached 2210.66 U/mL, up to 56.74-fold from the original activity under the optimized fermentation condition in 3-L fermentor. Finally, the biotransformation process of discarded feathers by the fermented keratinase was optimized, and our results indicated that 90.94% of discarded feathers (16%, w/v) were decomposed in 12 h. Our results suggested that strengthening precursor amino acids’ supplies was an efficient strategy for enhanced production of keratinase, and this research provided an efficient strain as well as the biotransformation process for discarded feather re-utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated and analyzed during this study are included in this article.

References

  1. Nnolim, N. E., Udenigwe, C. C., Okoh, A. I., & Nwodo, U. U. (2020). Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Frontiers in Microbiology, 11, 580164.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Menezes, C. L. A., Santos, R. D. C., Santos, M. V., Boscolo, M., da Silva, R., Gomes, E., & da Silva, R. R. (2021). Industrial sustainability of microbial keratinases: Production and potential applications. World Journal of Microbiology Biotechnology, 37, 86.

    Article  PubMed  Google Scholar 

  3. Peng, Z., Zhang, J., Song, Y., Guo, R., Du, G., & Chen, J. (2021). Engineered pro-peptide enhances the catalytic activity of keratinase to improve the conversion ability of feather waste. Biotechnology and Bioengineering, 118, 2559–2571.

    Article  CAS  PubMed  Google Scholar 

  4. Yang, L., Wang, H., Lv, Y., Bai, Y., Luo, H., Shi, P., Huang, H., & Yao, B. (2016). Construction of a Rapid Feather-Degrading Bacterium by Overexpression of a Highly Efficient Alkaline Keratinase in Its Parent Strain Bacillus amyloliquefaciens K11. Journal of Agricultural and Food Chemistry, 64, 78–84.

    Article  CAS  PubMed  Google Scholar 

  5. Cai, D., Rao, Y., Zhan, Y., Wang, Q., & Chen, S. (2019). Engineering Bacillus for efficient production of heterologous protein: Current progress, challenge and prospect. Journal of Applied Microbiology, 126, 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  6. Yi, D., Xing, J., Gao, Y., Pan, X., Xie, P., Yang, J., Wang, Q., & Gao, X. (2020). Enhancement of keratin-degradation ability of the keratinase KerBL from Bacillus licheniformis WHU by proximity-triggered chemical crosslinking. International Journal of Biological Macromolecules, 163, 1458–1470.

    Article  CAS  PubMed  Google Scholar 

  7. Cai, D., Wei, X., Qiu, Y., Chen, Y., Chen, J., Wen, Z., & Chen, S. (2016). High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. Journal of Applied Microbiology, 121, 704–712.

    Article  CAS  PubMed  Google Scholar 

  8. Yang, S., Du, G., Chen, J., & Kang, Z. (2017). Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Applied Microbiology and Biotechnology, 101, 4151–4161.

    Article  CAS  PubMed  Google Scholar 

  9. Deniz, I., Demir, T., Oncel, S. S., Hames, E. E., & Vardar-Sukan, F. (2021). Effect of Agitation and Aeration on Keratinase Production in Bioreactors Using Bioprocess Engineering Aspects. The Protein Journal, 40, 388–395.

    Article  CAS  PubMed  Google Scholar 

  10. Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology, 101, 6103–6110.

    Article  CAS  PubMed  Google Scholar 

  11. Feng, Y., Liu, S., Jiao, Y., Gao, H., Wang, M., Du, G., & Chen, J. (2017). Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy. Applied Microbiology and Biotechnology, 101, 1509–1520.

    Article  CAS  PubMed  Google Scholar 

  12. Wei, X., Zhou, Y., Chen, J., Cai, D., Wang, D., Qi, G., & Chen, S. (2015). Efficient expression of nattokinase in Bacillus licheniformis: Host strain construction and signal peptide optimization. Journal of Industrial Microbiology & Biotechnology, 42, 287–295.

    Article  CAS  Google Scholar 

  13. Rao, Y., Cai, D., Wang, H., Xu, Y., Xiong, S., Gao, L., Xiong, M., Wang, Z., Chen, S., & Ma, X. (2020). Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. Journal of Biotechnology, 312, 1–10.

    Article  CAS  PubMed  Google Scholar 

  14. Su, C., Gong, J. S., Sun, Y. X., Qin, J., Zhai, S., Li, H., Li, H., Lu, Z. M., Xu, Z. H., & Shi, J. S. (2019). Combining Pro-peptide Engineering and Multisite Saturation Mutagenesis To Improve the Catalytic Potential of Keratinase. ACS Synthetic Biology, 8, 425–433.

    Article  CAS  PubMed  Google Scholar 

  15. Li, K., Cai, D., Wang, Z., He, Z., & Chen, S. (2018). Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Applied and Environmental Microbiology, 84, e02608-17.

  16. Cai, D., Zhu, J., Zhu, S., Lu, Y., Zhang, B., Lu, K., Li, J., Ma, X., & Chen, S. (2019). Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synthetic Biology, 8, 866–875.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu, J., Wilkens, C., Barrett, K., & Meyer, A. S. (2020). Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnology Advances, 44, 107607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Degering, C., Eggert, T., Puls, M., Bongaerts, J., Evers, S., Maurer, K. H., & Jaeger, K. E. (2010). Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Applied and Environmental Microbiology, 76, 6370–6376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., Li, X., Wei, D., Wang, J., Shan, A., & Li, Z. (2015). Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector. Journal of Industrial Microbiology & Biotechnology, 42, 1369–1376.

    Article  CAS  Google Scholar 

  20. Xiao, J., Peng, B., Su, Z., Liu, A., Hu, Y., Nomura, C. T., Chen, S., & Wang, Q. (2020). Facilitating Protein Expression with Portable 5’-UTR Secondary Structures in Bacillus licheniformis. ACS Synthetic Biology, 9, 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, X., Xu, J., Liu, X., Chu, X., Wang, P., Tian, J., Wu, N., & Fan, Y. (2015). Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports, 5, 18405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, F., Cai, D., Li, L., Li, Y., Yang, H., Li, J., Ma, X., & Chen, S. (2019). Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Applied Microbiology and Biotechnology, 103, 8799–8812.

    Article  CAS  PubMed  Google Scholar 

  23. Opel-Reading, H. K., Mortuza, R., & Krause, K. L. (2019). Detection of D-glutamate production from the dual Function enzyme, 4-amino-4-deoxychorismate Lyase/D-amino Acid Transaminase, in Mycobacterium smegmatis. Bio-protocol, 9, e3135.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mundhada, H., Schneider, K., Christensen, H. B., & Nielsen, A. T. (2016). Engineering of high yield production of L-serine in Escherichia coli. Biotechnology and Bioengineering, 113, 807–816.

    Article  CAS  PubMed  Google Scholar 

  25. Li, S., Deng, J., Zhang, M., Luo, Z., Lu, W., Lu, D., Mao, H., Li, Z., Li, J., & Luo, X. (2021). Promotion of feather waste recycling by enhancing the reducing power and keratinase activity of Streptomyces sp SCUT-3. Green Chemistry, 23, 5166.

    Article  Google Scholar 

  26. Peng, Z., Mao, X., Zhang, J., Du, G., & Chen, J. (2020). Biotransformation of keratin waste to amino acids and active peptides based on cell-free catalysis. Biotechnology for Biofuels, 13, 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian, J., Xu, Z., Long, X., Tian, Y., & Shi, B. (2019). High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goatskins. International Journal of Biological Macromolecules, 135, 119–126.

    Article  CAS  PubMed  Google Scholar 

  28. Kang, Z., Yang, S., Du, G., & Chen, J. (2014). Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. Journal of Industrial Microbiology & Biotechnology, 41, 1599–1607.

    Article  CAS  Google Scholar 

  29. Wang, Y., Chen, Z., Zhao, R., Jin, T., Zhang, X., & Chen, X. (2014). Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis. Microbial Cell Factories, 13, 129.

    PubMed  PubMed Central  Google Scholar 

  30. Zhou, C., Zhou, H., Fang, H., Ji, Y., Wang, H., Liu, F., Zhang, H., & Lu, F. (2020). Spo0A can efficiently enhance the expression of the alkaline protease gene aprE in Bacillus licheniformis by specifically binding to its regulatory region. International Journal of Biological Macromolecules, 159, 444–454.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, J., Fu, G., Gai, Y., Zheng, P., Zhang, D., & Wen, J. (2015). Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: Identification of bottlenecks by systematic gene overexpression. Microbial Cell Factories, 14, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cao, H., Villatoro-Hernandez, J., Weme, R. D. O., Frenzel, E., & Kuipers, O. P. (2018). Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis. Metabolic Engineering, 49, 143–152.

    Article  CAS  PubMed  Google Scholar 

  33. Morimoto, T., Kadoya, R., Endo, K., Tohata, M., Sawada, K., Liu, S., Ozawa, T., Kodama, T., Kakeshita, H., Kageyama, Y., Manabe, K., Kanaya, S., Ara, K., Ozaki, K., & Ogasawara, N. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Research : An International Journal for Rapid Publication of Reports on Genes and Genomes, 15, 73–81.

    Article  CAS  PubMed  Google Scholar 

  34. Braun, F., Durand, S., & Condon, C. (2017). Initiating ribosomes and a 5’/3’-UTR interaction control ribonuclease action to tightly couple B. subtilis hbs mRNA stability with translation. Nucleic Acids Research, 45, 11386–11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song, Y., Fu, G., Dong, H., Li, J., Du, Y., & Zhang, D. (2017). High-Efficiency Secretion of beta-Mannanase in Bacillus subtilis through Protein Synthesis and Secretion Optimization. Journal of Agricultural and Food Chemistry, 65, 2540–2548.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., Liu, Y., Wang, Z., & Lu, F. (2014). Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotechnology Letters, 36, 1783–1789.

    Article  CAS  PubMed  Google Scholar 

  37. Cai, D., Zhu, J., Li, Y., Li, L., Zhang, M., Wang, Z., Yang, H., Li, J., Yang, Z., & Chen, S. (2020). Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis. Metabolic Engineering Communications, 11, e00136.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu, W., Li, D., Jia, S., Liu, Z., Nomura, C. T., Li, J., Chen, S., & Wang, Q. (2019). Systematic metabolic pathway modification to boost L-ornithine supply for bacitracin production in Bacillus licheniformis DW2. Applied Microbiology and Biotechnology, 103, 8383–8392.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, J., Li, L., Wu, F., Wu, Y., Wang, Z., Chen, X., Li, J., Cai, D., & Chen, S. (2021). Metabolic Engineering of Aspartic Acid Supply Modules for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synthetic Biology, 10, 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, J., Chen, Y., Wang, W., Ren, M., Wu, P., Wang, Y., Li, C., Zhang, L., Wu, H., Weaver, D. T., & Zhang, B. (2017). Engineering of an Lrp family regulator SACE_Lrp improves erythromycin production in Saccharopolyspora erythraea. Metabolic Engineering, 39, 29–37.

    Article  PubMed  Google Scholar 

  41. Feng, J., Quan, Y., Gu, Y., Liu, F., Huang, X., Shen, H., Dang, Y., Cao, M., Gao, W., Lu, X., Wang, Y., Song, C., & Wang, S. (2017). Enhancing poly-gamma-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Microbial Cell Factories, 16, 88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFC2100200), the Natural Science Foundation of Fujian Province (2021J01607), the Open Project Funding of Key Laboratory of Green Chemical Technology of Fujian Province University (WYKF-GCT2020-3), and the Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering (SKLBEE2018002).

Author information

Authors and Affiliations

Authors

Contributions

YL: methodology, investigation, data curation, software, writing—original draft. MX: investigation, software. ZM: investigation, data curation. AI: writing—review and editing. MZ: investigation, writing—review and editing. BL: investigation, writing—review and editing. YZ: methodology, investigation, data curation. DC: methodology, investigation, data curation, writing—original draft. ZY: methodology, investigation, data curation. JC: data curation, writing—review and editing. SC: supervision, writing—review and editing.

Corresponding authors

Correspondence to Jun Chen or Shouwen Chen.

Ethics declarations

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

All authors have their consent to publish their work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12010_2022_4206_MOESM1_ESM.doc

Supplementary file1 (DOC 1439 kb) The primers used in this research were provided in Table S1. The results of precursor amino acid additions on keratinase production, transcriptional level analysis of critical genes, and temperature stability experiments of keratinase were provided in Figure S1, S2 and S3, respectively. All these information could be attained in the additional file of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Xiong, M., Miao, Z. et al. Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers. Appl Biochem Biotechnol 195, 1752–1769 (2023). https://doi.org/10.1007/s12010-022-04206-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04206-x

Keywords

Navigation