Skip to main content
Log in

Industrial sustainability of microbial keratinases: production and potential applications

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Keratinases are proteolytic enzymes with a particular ability to cleave peptide bonds in keratin, and in other proteins. Due to their broad-spectrum of activity, keratinases are considered viable substitutes for chemical and thermal treatments of protein-rich industrial by-products. Among these protein residues, special attention has been given to keratinous materials (feathers, hair, horns, etc.), which disposal through harsh conditions methods, such as acid/alkaline hydrolysis or incineration, is not considered ecologically safe. Microbial keratinolytic enzymes allow for keratin degradation under mild conditions, resulting in keratin hydrolysates containing undamaged amino acids and peptides. In this review article, we offer perspectives on the relevance of these unique biocatalysts and their revolutionary ascent in industries that generate keratin-rich wastes. Additionally, we share insights for applications of keratinases and protein hydrolysates in agriculture, animal feed, cosmetics, phamaceuticals, detergent additives, leather processing, and others. Due to the scientific importance of keratinases and their potential use in green technologies, searching for bacterial and fungal species that efficiently produce these enzymes may contribute to the sustainability of industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adetunji CO, Adejumo IO (2018) Efficacy of crude and immobilized enzymes from Bacillus licheniformis for production of biodegraded feather meal and their assessment on chickens. Environ Technol 11:116–124. https://doi.org/10.1016/j.eti.2018.05.002

    Google Scholar 

  • Akhter M, Marzan LW, Akter Y, Shimizu K (2020) Microbial bioremediation of feather waste for keratinase production: an outstanding solution for leather dehairing in tanneries. Microbiol Insights. https://doi.org/10.1177/1178636120913280

    Google Scholar 

  • Akram F, Haq IUI, Jabbar Z (2020) Production and characterization of a novel thermo- and detergent stable keratinase from Bacillus sp. NKSP-7 with perceptible applications in leather processing and laundry industries. Int J Biol Macromol 164:371–383. https://doi.org/10.1016/j.ijbiomac.2020.07.146

    Google Scholar 

  • Alahyaribeik S, Sharifi SD, Tabandeh F, Honarbakhsh S, Ghazanfari S (2021) Stability and cytotoxicity of DPPH inhibitory peptides derived from biodegradation of chicken feather. Protein Expr Purif 177:105748. https://doi.org/10.1016/j.pep.2020.105748

    Google Scholar 

  • Alba AC, Strauch TA, Keisler DH, Wells KD, Kesler DC (2019) Using a keratinase to degrade chicken feathers for improved extraction of glucocorticoids. Gene Comput Endocrinol 270:35–40. https://doi.org/10.1016/j.ygcen.2018.10.002

    Google Scholar 

  • Allure N, Madhusudhan DN, Agsar D (2015) Enhanced production, purification and characterization of alkaline keratinase from Streptomyces minutiscleroticus DNA38. Int Lett Nat Sci 43:27–37

    Google Scholar 

  • Bálint B, Bagi Z, Tóth A, Rákhely G, Perei K, Kovács KL (2005) Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol 69:404–410. https://doi.org/10.1007/s00253-005-1993-3

    Google Scholar 

  • Barman NC, Zohora FT, Das KC, Mowla MG, Banu NA, Salimullah M, Hashem A (2017) Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp. NFH5 isolated from soil samples. AMB Expr 7: 181.

  • Bhange K, Chaturvedi V, Bhatt R (2015) Potential biofilm dispersal by a partially purified keratinase produced by Stenotrophomonas maltophilia strain Kb2. Biocatal Agric Biotechnol 4:801–805

    Google Scholar 

  • Bhange K, Chaturvedi V, Bhatt R (2016) Feather degradation potential of Stenotrophomonas maltophilia KB13 and feather protein hydrolysate (FPH) mediated reduction of hexavalent chromium. 3 Biotech 6:42

    Google Scholar 

  • Bhari R, Kaur M, Singh RS (2019) Thermostable and halotolerant keratinase from Bacillus aerius NSMk2 with remarkable dehairing and laundary applications. J Basic Microbiol 59:555–568. https://doi.org/10.1002/jobm.201900001

    Google Scholar 

  • Biswas P, Halder M, Joadar JC (2020) Biodegradation of poultry feather using Streptomyces sp. for nitrogen and its effect on growth and yield of okra. Int J Recycl Org Waste Agric 9:357–366

    Google Scholar 

  • Blecher AS, Scheun J, Ganswindt A (2021) Degradation of Temminck’s pangolin (Smutsia temminckii) scales with a keratinase for extraction of reproductive steroid hormones. MethodsX 8:101229

    Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2009) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750. https://doi.org/10.1007/s00253-009-2398-5

    Google Scholar 

  • Călin M, Constantinescu-Aruxandei D, Alexandrescu E, Răut I, Doni MB, Arsene L-M, Oancea F, Jecu L, Lazăr V (2017) Degradation of keratin substrates by keratinolytic fungi. Electron J Biotechnol 28:101–112. https://doi.org/10.1016/j.ejbt.2017.05.007

    Google Scholar 

  • Callegaro K, Brandelli A, Daroit DJ (2019) Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag 95:399–415. https://doi.org/10.1016/j.wasman.2019.06.040

    Google Scholar 

  • Cao S, Li D, Ma X, Xin Q, Song J, Lu F, Li Y (2019) A novel unhairing enzyme produced by heterologous expression of keratinase gene (kerT) in Bacillus subtilis. World J Microbiol Biotechnol 35:122. https://doi.org/10.1007/s11274-019-2701-2

    Google Scholar 

  • Chen H, Zhang S, Park I, Kim SW (2017) Impacts of energy feeds and supplemental protease on growth performance, nutrient digestibility, and gut health of pigs from 18 to 45 kg body weight. Anim Nutr 3:359–365. https://doi.org/10.1016/j.aninu.2017.09.005

    Google Scholar 

  • Duffeck CE, Menezes CLA, Boscolo M, Silva R, Gomes E, Silva RR (2020a) Citrobacter diversus-derived keratinases and their potential application as detergent-compatible cloth-cleaning agents. Braz J Microbiol 51:969–977. https://doi.org/10.1007/s42770-020-00268-3

    Google Scholar 

  • Duffeck CE, Menezes CLA, Boscolo M, Silva R, Gomes E, Silva RR (2020b) Keratinases from Coriolopsis byrsina as an alternative for feather degradation: applications for cloth cleaning based on commercial detergent compatibility and for the production of collagen hydrolysate. Biotechnol Lett 42:2403–2412. https://doi.org/10.1007/s10529-020-02963-5

    Google Scholar 

  • Elhoul MB, Jaouadi NZ, Bouacem K, Allala F, Rekik H, Mechri S, Ezzine HK, Miled N, Jaouadi B (2021) Heterologous expression and purification of keratinase from Actinomadura viridilutea DZ50: feather biodegradation and animal hide dehairing bioprocesses. Environ Sci Pollut Res 28:9921–9934. https://doi.org/10.1007/s11356-020-11371-1

    Google Scholar 

  • Emon TH, Hakim A, Chakraborthy D, Bhuyan FR, Iqbal A, Hasan M (2020) Kinetics, detergent compatibility and feather-degrading capability of alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 produced with fermentation of organic municipal solid wastes. J Environ Sci 55:1339–1348. https://doi.org/10.1080/10934529.2020.1794207

    Google Scholar 

  • Fang Z, Sha C, Peng Z, Zhang J, Du G (2019) Protein engineering to enhance keratinolytic protease activity and excretion in Escherichia coli and its scale-up fermentation for high extracellular yield. Enzyme Microb Technol 121:37–44. https://doi.org/10.1016/j.enzmictec.2018.11.003

    Google Scholar 

  • Feroz S, Muhammad N, Ratnayake J, Dias G (2020) Keratin-based materials for biomedical applications. Bioactive Materials 5:496–509. https://doi.org/10.1016/j.bioactmat.2020.04.007

    Google Scholar 

  • Fontoura R, Daroit DJ, Correa APF, Meira SMM, Mosquera M, Brandelli A (2014) Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol 31:506–513. https://doi.org/10.1016/j.nbt.2014.07.002

    Google Scholar 

  • Fontoura R, Daroit DJ, Corrêa APF, Moresco KS, Santi L, Beys-da-Silva WO, Yates JR, Moreira JCF, Brandelli A (2019) Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnol 49:71–76. https://doi.org/10.1016/j.nbt.2018.09.003

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2020) Meat market review. http://www.fao.org/3/cb2423en/CB2423EN.pdf. Accessed 03 Apr 2020.

  • Forgcács G, Alinezhad S, Mirabdollab A, Feuk-Lagerstedt E, Horváth IS (2011) Biological treatment of chicken feather waste for improved biogas production. J Environ Sci 23:1747–1753. https://doi.org/10.1016/s1001-0742(10)60648-1

    Google Scholar 

  • Gong J-S, Wang Y, Zhang D-D, Zhang R-X, Su C, Li H, Zhang X-M, Xu Z-H, Shi J-S (2015) Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. RSC Adv 5:24691

    Google Scholar 

  • Gong J-S, Ye J-P, Tao L-Y, Su C, Qin J, Zhang Y-Y, Li H, Li H, Xu Z-H, Shi J-S (2020) Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb Technol 137:09550. https://doi.org/10.1016/j.enzmictec.2020.109550

    Google Scholar 

  • Gunes GB, Akkoyun O, Demir T, Bozaci E, Demir A, Hames EE (2018) Microbial keratinase production and application to improve the properties of wool fabrics. Int J Text Sci 7(2):43–47. https://doi.org/10.5923/j.textile.20180702.02

    Google Scholar 

  • Hassan MA, Taha TH, Hamad GM, Hashemd M, Alamri S, Mostafa YS (2020) Biochemical characterisation and application of keratinase from Bacillus thuringiensis MT1 to enable valorisation of hair wastes through biosynthesis of vitamin B-complex. Int J Biol Macromol 153:561–572. https://doi.org/10.1016/j.ijbiomac.2020.03.032

    Google Scholar 

  • Holkar CR, Jain SS, Jadhav AJ (2018) Valorization of keratin based waste. Process Saf Environ 115:85–98. https://doi.org/10.1016/j.psep.2017.08.045

    Google Scholar 

  • Huang C, Ma D, Zang J, Zhang B, Sun B, Liu L, Zhang S (2018) Effect of keratinase on ileal amino acid digestibility in five feedstuffs fed to growing pigs. Asian-Australas J Anim Sci 31:1946–1955. https://doi.org/10.5713/ajas.17.0815

    Google Scholar 

  • Jagadeesan Y, Meenakshisundaram S, Saravanan V, Balaiah A (2020) Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int J Biol 163:135–146. https://doi.org/10.1016/j.ijbiomac.2020.06.219

    Google Scholar 

  • Jain R, Jain A, Rawat N, Nair M, Gumashta R (2016) Feather hydrolysate from Streptomyces sampsonii GS 1322: a potential low cost soil amendment. J Biosci Bioeng 121:672–677. https://doi.org/10.1016/j.jbiosc.2015.11.003

    Google Scholar 

  • Jaouadi NZ, Rekik H, Elhoul MB, Rahem FZ, Hila CG, Aicha HSBA, Badis A, Toumi A, Bejar S, Jaouadi B (2015) A novel keratinase from Bacillus tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol 79:952–964. https://doi.org/10.1016/j.ijbiomac.2015.05.038

    Google Scholar 

  • Jeong J-H, Lee O-M, Jeon Y-D, Kim J-D, Lee N-R, Lee C-Y, Son H-J (2010) Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem 45:1738–1745. https://doi.org/10.1016/j.procbio.2010.07.020

    Google Scholar 

  • Kalaikumari SS, Vennila T, Monika V, Chandraraj K, Gunasekaran P, Rajendhran J (2019) Bioutilization of poultry feather for keratinase production and its application in leather industry. J Clean Prod 208:44–53. https://doi.org/10.1016/j.jclepro.2018.10.076

    Google Scholar 

  • Kshetri P, Roy SS, Sharma SK, Singh TS, Ansari MA, Prakash N, Ngachan SV (2019) Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste Biomass Valor 10:1–11. https://doi.org/10.1007/s12649-017-0037-4

    Google Scholar 

  • Kshetri P, Roy SS, Chanu SB, Singh TS, Tamreihao K, Sharma SK, Ansari MA, Prakash N (2020) Valorization of chicken feather waste into bioactive keratin hydrolysate by a newly purified keratinase from Bacillus sp. RCM-SSR-102. J Environ Manag 273:111195. https://doi.org/10.1016/j.jenvman.2020.111195

    Google Scholar 

  • Łaba W, Żarowska B, Chorążyk D, Pudło A, Piegza M, Kancelista A, Kopeć W (2018) New keratinolytic bacteria in valorization of chicken feather waste. AMB Expr 8:9. https://doi.org/10.1186/s13568-018-0538-y

    Google Scholar 

  • Lange L, Huang Y, Busk PK (2016) Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 100:2083–2096. https://doi.org/10.1007/s00253-015-7262-1

    Google Scholar 

  • Latshaw JD, Musharaf N, Retrum R (1994) Processing of featherto maximize its nutritional value for poultry. Anim Feed Sci Technol 47:179–188

    Google Scholar 

  • Li J, Shi P-J, Han X-Y, Meng K, Yang P-L, Wang Y-R, Luo H-Y, Wu N-F, Yao B, Fan Y-L (2007) Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expr Purif 54:79–86. https://doi.org/10.1016/j.pep.2007.02.012

    Google Scholar 

  • Li Z-W, Liang S, Ke Y, Deng J-J, Zhang M-S, Lu D-L, Li J-Z, Luo X-C (2020) The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol 3:191. https://doi.org/10.1038/s42003-020-0918-0

    Google Scholar 

  • Lin X, Tang J, Koelsch G, Monod M, Foundling S (1993) Recombinant Canditropsin, an extracellular aspartic protease from yeast Candida tropicalis. J Biol Chem 268:20143–20147

    Google Scholar 

  • McLellan J, Thornhill SG, Shelton S, Kumar M (2018) Keratin-based biofilms, hydrogels, and biofibers. Life Sci Space Res. https://doi.org/10.1007/978-3-030-02901-2_7

    Google Scholar 

  • Meruane M, Rojas M (2012) Desarrollo de la piel y sus anexos en vertebrados. Int J Morphol 30(4):1422–1433

    Google Scholar 

  • Miltenburg TZ, Peralta RM, Oliveira CAL, Janeiro V, Pereira EQ, Nicolau JTS, Ribeiro LB, Vasconcellos RS (2019) Effects of combined use of keratinolytic enzymes and sugarcane fibre on the hairball excretion in cats. J Anim Physiol Anim Nutr. https://doi.org/10.1111/jpn.13177

    Google Scholar 

  • Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, Kanouchi H, Oka T (2006) Degradation of PrPSc by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 70:1246–1248

    Google Scholar 

  • Mohorcic M, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201

    Google Scholar 

  • Nafady NA, Hassan EA, Abd-Alla MH, Bagy MMK (2018) Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatal Agric Biotechnol 16:140–147. https://doi.org/10.1016/j.bcab.2018.07.024

    Google Scholar 

  • Navone L, Speight R (2019) Enzyme systems for effective dag removal from cattle hides. Anim Prod Sci 59(7):1387–1398

    Google Scholar 

  • Navone L, Speight R (2020) Enzymatic removal of dags from livestock: an agricultural application of enzyme technology. Appl Microbiol Biotechnol 104:5739–5748. https://doi.org/10.1007/s00253-020-10656-2

    Google Scholar 

  • Negi M, Tsuboi R, Matsui T, Ogawa H (1984) Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol 83:32–36

    Google Scholar 

  • Ningthoujam DS, Mukherjee S, Devi LJ, Singh ES, Tamreihao K, Khunjamayum R, Banerjee S, Mukhopadhyay D (2019) In vitro degradation of β-amyloid fibrils by microbial keratinase. Alzheimers Dement 5:154–163. https://doi.org/10.1016/j.trci.2019.03.003

    Google Scholar 

  • Nnolim NE, Nwodo UU (2021) Microbial keratinase and the bio-economy: a three-decade meta-analysis of research exploit. AMB Expr 11:12. https://doi.org/10.1186/s13568-020-01155-8

    Google Scholar 

  • Nnolim NE, Ntozonke N, Okoh AI, Nwodo UU (2020) Exoproduction and characterization of a detergent-stable alkaline keratinase from Arthrobacter sp. KFS-1. Biochimie 177:53–62. https://doi.org/10.1016/j.biochi.2020.08.005

    Google Scholar 

  • Nurdiawati A, Nakhshiniev B, Zaini IN, Saidov N, Takahashi F, Yoshikawa K (2017) Characterization of potential liquid fertilizers obtained by hydrothermal treatment of chicken feathers. Environ Prog Sustain Energy 37:375–382. https://doi.org/10.1002/ep.12688

    Google Scholar 

  • Nurdiawati A, Nakhshiniev B, Gonzales HB, Yoshikawa K (2019) Nitrogen mineralization dynamics of liquid feather hydrolysates obtained by hydrothermal treatment. Appl Soil Ecol 134:98–104. https://doi.org/10.1016/j.apsoil.2018.10.021

    Google Scholar 

  • Okoroma EA, Purchase D, Garelick H, Morris R, Neale MH, Windl O, Abiola OO (2013) Enzymatic formulation capable of degrading scrapie prion under mild digestion conditions. PLoS ONE 8:e68099

    Google Scholar 

  • Patinvoh R, Feuk-Lagerstedt E, Lundin M, Horváth IS, Taherzadeh MJ (2016) Biological pretreatment of chicken feather and biogas production from total broth. Appl Biochem Biotechnol 180:1401–1415. https://doi.org/10.1007/s12010-016-2175-8

    Google Scholar 

  • Paul T, Jana A, Mandal AK, Mandal A, Mohpatra PK, Mondal KC (2016) Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustain Chem Pharm 3:8–22. https://doi.org/10.1016/j.scp.2016.01.001

    Google Scholar 

  • Preczeski KP, Dalastra C, Czapela FF, Kubeneck S, Scapini T, Camargo AF, Zanivan J, Bonatto C, Stefanski FS, Venturin B, Fongaro G, Treichel H (2020) Fusarium oxysporum and Aspergillus sp. as keratinase producers using swine hair from agroindustrial residues. Front Bioeng Biotechnol 8:71. https://doi.org/10.3389/fbioe.2020.00071

    Google Scholar 

  • Qiu J, Wilkens C, Barrett K, Meyer AS (2020) Microbial enzymes catalyzing keratin degradation: classification, structure, function. Biotechnol Adv 44:107607. https://doi.org/10.1016/j.biotechadv.2020.107607

    Google Scholar 

  • Rai SK, Mukherjee AK (2015) Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal Agric Biotechnol 4:632–644. https://doi.org/10.1016/j.bcab.2015.07.002

    Google Scholar 

  • Rai SK, Roy JK, Mukherjee AK (2020) Application of poly (vinyl alcohol)-assisted silver nanoparticles immobilized β-keratinase composite as topical antibacterial and dehairing agent. J Proteins Proteom 11:119–134. https://doi.org/10.1007/s42485-020-00034-x

    Google Scholar 

  • Rajabinejad H, Zoccola M, Patrucco A, Montarsolo A, Rovero G, Tonin C (2018) Physicochemical properties of keratin extracted from wool by various methods. Text Res J 88(21):2415–2424

    Google Scholar 

  • Sanghvi G, Patel H, Vaishnav D, Oza T, Dave G, Kunjadia P, Sheth N (2016) A novel alkaline keratinase from Bacillus subtilis DP1 with potentialutility in cosmetic formulation. Int J Biol Macromol 87:256–262

    Google Scholar 

  • Sharma R, Devi S (2018) Versatility and commercial status of microbial keratinases: a review. Rev Environ Sci Biotechnol 17:19–45. https://doi.org/10.1007/s11157-017-9454-x

    Google Scholar 

  • Sharma I, Kango N (2021) Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. Int J Biol Macromol 166:1046–1056. https://doi.org/10.1016/j.ijbiomac.2020.10.260

    Google Scholar 

  • Sharma A, Gupta G, Ahmad T, Mansoor S, Kaur B (2019) Enzyme Engineering: current trends and future perspectives. Food Rev Int 37:121–154. https://doi.org/10.1080/87559129.2019.1695835

    Google Scholar 

  • Silva RR (2018a) Keratinases as an alternative method designed to solve keratin disposal on the environment: its relevance on agricultural and environmental chemistry. J Agric Food Chem 66(28):7219–7221

    Google Scholar 

  • Silva RR (2018b) Enzymatic synthesis of protein hydrolysates from animal proteins: exploring microbial peptidases. Front Microbiol 9:735. https://doi.org/10.3389/fmicb.2018.00735

    Google Scholar 

  • Silva RR, Oliveira LCG, Juliano MA, Juliano L, Rosa JC, Cabral H (2017) Activity of a peptidase secreted by Phanerochaete chrysosporium depends on lysine to subsite S’1. Int J Biol Macromol 94:474–483

    Google Scholar 

  • Sinkiewicz I, Śliwińska A, Staroszczyk H, Kołodziejska I (2017) Alternative methods of preparation of soluble keratin from chicken feathers. Waste Biomass Valor 8:1043–1048

    Google Scholar 

  • Sinkiewicz I, Staroszczyk H, Śliwińska A (2018) Solubilization of keratins and functional properties of their isolates and hydrolysates. J Food Biochem 42:12494. https://doi.org/10.1111/jfbc.12494

    Google Scholar 

  • Srivastava B, Singh H, Khatri M, Singh G, Arya SK (2020) Immobilization of keratinase on chitosan grafted-β-cyclodextrin for the improvement of the enzyme properties and application of free keratinase in the textile industry. Int J Biol Macromol 165:1099–1110. https://doi.org/10.1016/j.ijbiomac.2020.10.009

    Google Scholar 

  • Su C, Gong J-S, Qin J, Li H, Li H, Xu Z-H, Shi J-S (2020a) The tale of a versatile enzyme: molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 45:107655. https://doi.org/10.1016/j.biotechadv.2020.107655

    Google Scholar 

  • Su C, Gong J-S, Ye J-P, He J-M, Li R-Y, Jiang M, Geng Y, Zhang Y, Chen J-H, Xu Z-H, Shi J-S (2020b) Enzymatic extraction of bioactive and self-assembling wool keratin for biomedical applications. Macromol Biosci 20:2000073

    Google Scholar 

  • Tamreihao K, Devi LJ, Khunjamayum R, Mukherjee S, Ashem RS, Ningthoujam DS (2017) Biofertilizing potential of feather hydrolysate produced by indigenous keratinolytic Amycolatopsis sp. MBRL 40 for rice cultivation under field conditions. Biocatal Agric Biotechnol 10:317–320. https://doi.org/10.1016/j.bcab.2017.04.010

    Google Scholar 

  • Tesfaye T, Sithole B, Ramjugernatha D, Chunilall V (2017) Valorisation of chicken feathers: characterisation of chemical properties. Waste Manag 68:626–635. https://doi.org/10.1016/j.wasman.2017.06.050

    Google Scholar 

  • Tesfaye T, Sithole B, Ramjugernath D, Mokhothu T (2018) Valorisation of chicken feathers: characterisation of thermal, mechanicaland electrical properties. Sustain Chem Pharm 9:27–34. https://doi.org/10.1016/j.scp.2018.05.003

    Google Scholar 

  • Thankaswamy SR, Sundaramoorthy S, Palanivel S, Ramudu KN (2018) Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J Clean Prod 189:701–708

    Google Scholar 

  • Tian J, Xu Z, Long X, Tian Y, Shi B (2019) High-expression keratinase by Bacillus subtilis SCK6 for enzymatic dehairing of goat skins. Int J Biol Macromol 135:119–126. https://doi.org/10.1016/j.ijbiomac.2019.05.131

    Google Scholar 

  • United States Department of Agriculture (2021) Livestock and poultry: world markets and trade. https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf. Accessed 03 Apr 2020.

  • Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S (2016) Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front Microbiol 7:1189. https://doi.org/10.3389/fmicb.2016.01189

    Google Scholar 

  • Vidmar B, Vodovnik M (2018) Microbial keratinases: enzymes with promising biotechnological applications. Food Technol Biotechnol 56:312–328. https://doi.org/10.17113/ftb.56.03.18.5658

    Google Scholar 

  • Villa ALV, Aragão MRS, dos Santos EP, Mazotto AM, Zingali RB, Souza EP, Vermelho AB (2013) Feather keratin hydrolysates obtained from microbial keratinases: effect on hair fiber. BMC Biotechnol 13:15

    Google Scholar 

  • Wang JJ, Garlich JD, Shih JCH (2006) Beneficial effects of versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J Appl Poult Res 15:544–550

    Google Scholar 

  • Wang H, Guo Y, Shih JCH (2008) Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim Feed Sci Technol 140:376–384. https://doi.org/10.1016/j.anifeedsci.2007.04.003

    Google Scholar 

  • Wang D, Piao XS, Zeng ZK, Lu T, Zhang Q, Li PF, Xue LF, Kim SW (2011) Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-Aust J Anim Sci 24:1718–1728. https://doi.org/10.5713/ajas.2011.11132

    Google Scholar 

  • Wang B, Yang W, Mckittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318. https://doi.org/10.1016/j.pmatsci.2015.06.001

    Google Scholar 

  • Yeo I, Lee Y-J, Song K, Jin H-S, Lee J-E, Kim D, Lee DW, Kang NJ (2018) Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. J Biotechnol 271:17–25. https://doi.org/10.1016/j.jbiotec.2018.02.003

    Google Scholar 

  • Zahara I, Arshad M, Naeth MA, Siddique T, Ullah A (2020) Feather keratin derived sorbents for the treatment of wastewater produced during energy generation processes. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128545

    Google Scholar 

  • Zhang Z, Li D, Zhang X (2019) Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. Bioresour Technol 280:165–172. https://doi.org/10.1016/j.biortech.2019.02.049

    Google Scholar 

  • Zhou L, Xie X, Wu T, Chen M, Yao Q, Zhu H, Zou W (2020) Compound enzymatic hydrolysis of feather waste to improve the nutritional value. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00643-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronivaldo Rodrigues da Silva.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Ethical approval

In this article, we did not perform any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, C.L.A., Santos, R.C., Santos, M.V. et al. Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol 37, 86 (2021). https://doi.org/10.1007/s11274-021-03052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03052-z

Keywords

Navigation