Skip to main content
Log in

Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Plectasin, the first fungus defensin, is especially efficient against Gram-positive bacteria. To explore an effective approach for expressing plectasin in Bacillus subtilis, the sequence encoding plectasin fused with the small ubiquitin-like modifier (SUMO) gene, the 6 × His gene and the signal peptide of SacB were cloned into an E. coliB. subtilis shuttle vector pGJ148 in which the maltose utilization operon promoter Pglv directed the expression. The fusion protein successfully secreted in culture and approximately, 41 mg of the recombinant fusion protein SUMO-plectasin was purified per liter of culture supernatant. After purification by Ni-NTA resin column and digestion by SUMO protease, 5.5 mg of plectasin with a purity of 94 % was obtained from 1 L fermentation culture. Recombinant plectasin was found inhibition activity against S. pneumoniae, S. aureus and S. epidermidis. These results indicate that the maltose-induced expression system may be a safe and efficient way for the large-scale production of soluble peptides in B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao Y, Ma Q, Shan A, Dong N (2012) Expression in Pichia pastoris and biological activity of avian β-defensin 6 and its mutant peptide without cysteines. Protein Peptide Lett 19:1064–1070. doi:10.2174/092986612802762660

    Article  CAS  Google Scholar 

  2. Chen X, Shi J, Chen R, Wen Y, Shi Y, Zhu Z, Guo S, Li L (2014) Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Bioc. doi:10.1002/bab.1303

    Google Scholar 

  3. Chen X, Zhu F, Cao Y, Qiao S (2009) Novel expression vector for secretion of cecropin AD in Bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Chemother 53:3683–3689. doi:10.1128/AAC.00251-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040. doi:10.1007/s00253-015-6375-x

    Article  PubMed  Google Scholar 

  5. Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J (2014) Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 35:8028–8039. doi:10.1016/j.biomaterials.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  6. Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. doi:10.1038/nbt1267

    Article  CAS  PubMed  Google Scholar 

  7. Hara S, Mukae H, Sakamoto N et al (2008) Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun 374:709–713. doi:10.1016/j.bbrc.2008.07.093

    Article  CAS  PubMed  Google Scholar 

  8. He Q, Fu AY, Li TJ (2015) Expression and one-step purification of the antimicrobial peptide cathelicidin-BF using the intein system in Bacillus subtilis. J Ind Microbiol Biotechnol 42:647–653. doi:10.1007/s10295-014-1582-5

    Article  CAS  PubMed  Google Scholar 

  9. Ilk N, Schumi CT, Bohle B, Egelseer EM, Sleytr UB (2011) Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy. Microb Cell Fact. doi:10.1186/1475-2859-10-6

    PubMed Central  PubMed  Google Scholar 

  10. Jing X, Luo X, Tian W, Lv L, Jiang Y, Wang N, Zhang T (2010) High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr Microbiol 61(3):197–202. doi:10.1007/s00284-010-9596-3

    Article  CAS  PubMed  Google Scholar 

  11. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80(2):260–267. doi:10.1016/j.pep.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  12. Li Y (2013) Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expr Purif 87:72–78. doi:10.1016/j.pep.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  13. Luan C, Zhang HW, Song DG, Xie YG, Feng J, Wang YZ (2014) Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl Microbiol Biotechnol 98(8):3651–3658. doi:10.1007/s00253-013-5246-6

    Article  CAS  PubMed  Google Scholar 

  14. Malakhov M, Mattern M, Malakhova O, Drinker M, Weeks S, Butt T (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75–86. doi:10.1023/B:JSFG.0000029237.70316.52

    Article  CAS  Google Scholar 

  15. Mygind PH, Fischer RL, Schnorr KM et al (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980. doi:10.1038/nature04051

    Article  CAS  PubMed  Google Scholar 

  16. Parachin NdS, Mulder KC, AnArB Viana, Dias SC, OvL Franco (2012) Expression systems for heterologous production of antimicrobial peptides. Peptides 38:446–456. doi:10.1016/j.peptides.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  17. Reverter D, Lima Cd (2009) Preparation of SUMO proteases and kinetic analysis using endogenous substrates. SUMO Protocols, London

    Book  Google Scholar 

  18. Vavrova´ Ludmila, Muchova´ Katarı´na, Bara´k Imrich (2010) Comparison of different Bacillus subtilis expression systems. Res Microbiol 161:791–797. doi:10.1016/j.resmic.2010.09.004

    Article  PubMed  Google Scholar 

  19. Wang Y, Liu Y, Wang Z, Lu F (2014) Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotechnol Lett 36:1783–1789. doi:10.1007/s10529-014-1538-x

    Article  CAS  PubMed  Google Scholar 

  20. Wu S, Zhang F, Huang Z et al (2012) Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35:225–230. doi:10.1016/j.peptides.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  21. Yang M, Zhang W, Chen Y, Gong Y (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact 9:55. doi:10.1186/1475-2859-9-55

    Article  Google Scholar 

  22. Yang M, Zhang W, Ji S, Cao P, Chen Y, Zhao X (2013) Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS One 8(2):e56321. doi:10.1371/journal.pone.0056321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Yang M, Zhang W, Zhang X, Cen P (2006) Construction and characterization of a novel maltose inducible expression vector in Bacillus subtilis. Biotechnol Lett 28:1713–1718. doi:10.1007/s10529-006-9146-z

    Article  CAS  Google Scholar 

  24. Yang Y, Teng D, Zhang J, Tian Z, Wang S, Wang J (2011) Characterization of recombinant plectasin: solubility, antimicrobial activity and factors that affect its activity. Process Biochem 46(5):1050–1055. doi:10.1016/j.procbio.2011.01.018

    Article  CAS  Google Scholar 

  25. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634. doi:10.1002/biot.201100155

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Yang Y, Teng D, Tian Z, Wang S, Wang J (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphylococcus and Streptococcus. Protein Expr Purif 78:189–196. doi:10.1016/j.pep.2011.04.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (31472104), the National Basic Research Program (2012CB124703), the National Science and Technology Support Program (2013BAD10B03), the China Agriculture Research System (CARS-36), and the Program for Universities in Heilongjiang Province (1254CGZH22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshan Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Wei, D. et al. Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector. J Ind Microbiol Biotechnol 42, 1369–1376 (2015). https://doi.org/10.1007/s10295-015-1673-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1673-y

Keywords

Navigation