Skip to main content
Log in

Preparation and characterization of poly(lactic acid)-based contact-active antimicrobial surfaces

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA)-based contact-active antimicrobial surfaces were successfully fabricated via the spray coating method. For this purpose, firstly two separate antimicrobial polymers were synthesized by introducing alkyne functionalized quaternary ammonium salt into clickable copolymer containing 30 mol% and 5 mol% of quaternary ammonium salt on their backbones. Then, these synthesized polymers were applied to coat one surface of the neat PLA films (PLA/PEG, 90/10) at the rate of 5, 15, and 25 times, respectively. Afterward, the biocidal effect of these films was considered against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria by the way of contact-active method. It was observed that the films coated with polymer containing 30 mol% of quaternary ammonium salt (QAS), even at the lowest coating amount, showed a considerably active antimicrobial property against both bacteria. The thermal, mechanical, and barrier properties of coated films were also investigated. In addition, a cytotoxicity test was performed, and it was found that the PLA film was nontoxic when it was coated with polymer containing 5 mol% of quaternary ammonium salt, even at a high coating amount. For a polymer containing 30 mol% of quaternary ammonium salt on its backbone, it was necessary to coat the films at a low rate for acceptable cytotoxicity. In conclusion, due to the contact-active behavior of covalently attached antimicrobial agents, high antibacterial activity, suitable mechanical properties, and acceptable cytocompatibility, these antimicrobial surfaces can be considered as a potential candidate for bio-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kenawy, E-R, Salem, IA, Abo-Elghit, EM, Al-Owais, A, “New Trends in Antimicrobial Polymers: A State-of-the-Art Review.” Int. J. Chem. Appl. Biol. Sci., 1 (6) 95 (2014)

    Article  Google Scholar 

  2. Kenawy, E-R, Worley, S, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 (5) 1359–1384 (2007)

    Article  CAS  Google Scholar 

  3. Jain, A, Duvvuri, LS, Farah, S, Beyth, N, Domb, AJ, Khan, W, “Antimicrobial Polymers.” Adv. Healthcare Mater., 3 (12) 1969–1985 (2014)

    Article  CAS  Google Scholar 

  4. Muñoz-Bonilla, A, Fernández-García, M, “Polymeric Materials with Antimicrobial Activity.” Prog. Polym. Sci., 37 (2) 281–339 (2012)

    Article  Google Scholar 

  5. Muñoz-Bonilla, A, María, L, Fernández-García, M, “Polymeric Materials with Antimicrobial Activity: From Synthesis to Applications.” R. Soc. Chem., 5 847 (2013)

    Google Scholar 

  6. Timofeeva, L, Kleshcheva, N, “Antimicrobial Polymers: Mechanism of Action, Factors of Activity, and Applications.” Appl. Microbiol. Biotechnol., 89 (3) 475–492 (2011)

    Article  CAS  Google Scholar 

  7. Druvari, D, Koromilas, N, Bekiari, V, Bokias, G, Kallitsis, J, “Polymeric Antimicrobial Coatings Based on Quaternary Ammonium Compounds.” Coatings, 8 (1) 8 (2018)

    Article  Google Scholar 

  8. Tawakkal, IS, Cran, MJ, Miltz, J, Bigger, SW, “A Review of Poly (lactic acid)-Based Materials for Antimicrobial Packaging.” J. Food Sci., 79 (8) R1477–R1490 (2014)

    Article  CAS  Google Scholar 

  9. Siedenbiedel, F, Tiller, JC, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles.” Polymers, 4 (1) 46–71 (2012)

    Article  CAS  Google Scholar 

  10. Ferreira, L, Zumbuehl, A, “Non-leaching Surfaces Capable of Killing Microorganisms on Contact.” J. Mater. Chem., 19 (42) 7796–7806 (2009)

    Article  CAS  Google Scholar 

  11. Tian, F, Decker, EA, Goddard, JM, “Controlling Lipid Oxidation of Food by Active Packaging Technologies.” Food Funct., 4 (5) 669–680 (2013)

    Article  CAS  Google Scholar 

  12. Lu, G, Wu, D, Fu, R, “Studies on the Synthesis and Antibacterial Activities of Polymeric Quaternary Ammonium Salts from Dimethylaminoethyl Methacrylate.” React. Funct. Polym., 67 (4) 355–366 (2007)

    Article  CAS  Google Scholar 

  13. Tejero, R, Gutiérrez, B, López, D, López-Fabal, F, Gómez-Garcés, JL, Muñoz-Bonilla, A, Fernández-García, M, “Tailoring Macromolecular Structure of Cationic Polymers Towards Efficient Contact Active Antimicrobial Surfaces.” Polymers, 10 (3) 241 (2018)

    Article  Google Scholar 

  14. Peng, K, Zou, T, Ding, W, Wang, R, Guo, J, Round, JJ, Tu, W, Liu, C, Hu, J, “Development of Contact-Killing Non-leaching Antimicrobial Guanidyl-Functionalized Polymers via Click Chemistry.” RSC Adv., 7 (40) 24903–24913 (2017)

    Article  CAS  Google Scholar 

  15. Majumdar, P, He, J, Lee, E, Kallam, A, Gubbins, N, Stafslien, SJ, Daniels, J, Chisholm, BJ, “Antimicrobial Activity of Polysiloxane Coatings Containing Quaternary Ammonium-Functionalized Polyhedral Oligomeric Silsesquioxane.” J. Coat. Technol. Res., 7 (4) 455–467 (2010)

    Article  CAS  Google Scholar 

  16. Majumdar, P, Lee, E, Patel, N, Stafslien, SJ, Daniels, J, Chisholm, BJ, “Development of Environmentally Friendly, Antifouling Coatings Based on Tethered Quaternary Ammonium Salts in a Crosslinked Polydimethylsiloxane Matrix.” J. Coat. Technol. Res., 5 (4) 405–417 (2008)

    Article  CAS  Google Scholar 

  17. Farah, S, McAvoy, M, Jahjaa, A, “Catheters with Antimicrobial Surfaces.” Antimicrob. Mater. Biomed. Appl., 2 370–420 (2019)

    Google Scholar 

  18. Dizman, B, Elasri, MO, Mathias, LJ, “Synthesis and Antimicrobial Activities of New Water-Soluble Bis-Quaternary Ammonium Methacrylate Polymers.” J. Appl. Polym. Sci., 94 (2) 635–642 (2004)

    Article  CAS  Google Scholar 

  19. Bruna, J, Quilodran, H, Guarda, A, Rodriguez, F, Galotto, M, Figueroa, P, “Development of Antibacterial MtCu/PLA Nanocomposites by Casting Method for Potential Use in Food Packaging.” J. Chil. Chem. Soc., 60 (3) 3009–3014 (2015)

    Article  CAS  Google Scholar 

  20. Moreno, O, Díaz, R, Atarés, L, Chiralt, A, “Influence of the Processing Method and Antimicrobial Agents on Properties of Starch-Gelatin Biodegradable Films.” Polym. Int., 65 (8) 905–914 (2016)

    Article  CAS  Google Scholar 

  21. Siracusa, V, Rocculi, P, Romani, S, Dalla Rosa, M, “Biodegradable Polymers for Food Packaging: A Review.” Trends Food Sci. Technol., 19 (12) 634–643 (2008)

    Article  CAS  Google Scholar 

  22. Tanaese, EE, Rapa, M, Popa, O, “Biopolymers Based on Renewable Resources-A Review.” Sci. Bull. Ser. F. Biotechnol., 18 188–195 (2014)

    Google Scholar 

  23. Kim, JY, Ha, CS, Jo, NJ, “Synthesis and Properties of Biodegradable Chitin-Graft-Poly(L-lactide) Copolymers.” Polym. Int., 51 (10) 1123–1128 (2002)

    Article  CAS  Google Scholar 

  24. Van de Velde, K, Kiekens, P, “Biopolymers: Overview of Several Properties and Consequences on Their Applications.” Polym. Test., 21 (4) 433–442 (2002)

    Article  Google Scholar 

  25. Murariu, M, Dubois, P, “PLA Composites: From Production to Properties.” Adv. Drug Delivery Rev., 107 17–46 (2016)

    Article  CAS  Google Scholar 

  26. Castro-Aguirre, E, Iñiguez-Franco, F, Samsudin, H, Fang, X, Auras, R, “Poly(lactic acid)-Mass Production, Processing, Industrial Applications, and End of Life.” Adv. Drug Delivery Rev., 107 333–366 (2016)

    Article  CAS  Google Scholar 

  27. Hamad, K, Kaseem, M, Yang, H, Deri, F, Ko, Y, “Properties and Medical Applications of Polylactic Acid: A Review.” Express Polym. Lett., 9 (5) 85 (2015)

    Article  Google Scholar 

  28. Li, G, Zhao, M, Xu, F, Yang, B, Li, X, Meng, X, Teng, L, Sun, F, Li, Y, “Synthesis and Biological Application of Polylactic Acid.” Molecules, 25 (21) 5023 (2020)

    Article  CAS  Google Scholar 

  29. Doganci, MD, Aynali, F, Doganci, E, Ozkoc, G, “Mechanical, Thermal and Morphological Properties of Poly(lactic acid) by Using Star-Shaped Poly (ε-caprolactone) with POSS Core.” Eur. Polym. J., 121 109316 (2019)

    Article  Google Scholar 

  30. Si, W-J, Yang, L, Weng, Y-X, Zhu, J, Zeng, J-B, “Poly(lactic acid)/Biobased Polyurethane Blends with Balanced Mechanical Strength and Toughness.” Polym. Test., 69 9–15 (2018)

    Article  CAS  Google Scholar 

  31. Anderson, KS, Schreck, KM, Hillmyer, MA, “Toughening Polylactide.” Polym. Rev., 48 (1) 85–108 (2008)

    Article  CAS  Google Scholar 

  32. Hamad, K, Kaseem, M, Ayyoob, M, Joo, J, Deri, F, “Polylactic Acid Blends: The Future of Green, Light and Tough.” Prog. Polym. Sci., 85 83–127 (2018)

    Article  CAS  Google Scholar 

  33. Aynali, F, Doganci, E, Doruk, T, Sadikoglu, H, “Synthesis and Characterization of Antimicrobial Polylactide via Ring-Opening Polymerization and Click Chemistry Methods.” Polym. Int., 68 (3) 385–393 (2019)

    Article  CAS  Google Scholar 

  34. Riva, R, Schmeits, S, Stoffelbach, F, Jérôme, C, Jérôme, R, Lecomte, P, “Combination of Ring-Opening Polymerization and ‘Click’ Chemistry Towards Functionalization of Aliphatic Polyesters.” Chem. Commun., 42 5334–5336 (2005)

    Article  Google Scholar 

  35. Zhang, Q, Ren, H, Baker, GL, “Synthesis and Click Chemistry of a New Class of Biodegradable Polylactide Towards Tunable Thermo-Responsive Biomaterials.” Polym. Chem, 6 (8) 1275–1285 (2015)

    Article  CAS  Google Scholar 

  36. Xu, J, Prifti, F, Song, J, “A Versatile Monomer for Preparing Well-Defined Functional Polycarbonates and Poly (ester-carbonates).” Macromolecules, 44 (8) 2660–2667 (2011)

    Article  CAS  Google Scholar 

  37. Bastarrachea, L, Dhawan, S, Sablani, SS, “Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review.” Food Eng. Rev., 3 (2) 79–93 (2011)

    Article  Google Scholar 

  38. El Habnouni, S, Darcos, V, Garric, X, Lavigne, JP, Nottelet, B, Coudane, J, “Mild Methodology for the Versatile Chemical Modification of Polylactide Surfaces: Original Combination of Anionic and Click Chemistry for Biomedical Applications.” Adv. Funct. Mater., 21 (17) 3321–3330 (2011)

    Article  Google Scholar 

  39. El Habnouni, S, Lavigne, J-P, Darcos, V, Porsio, B, Garric, X, Coudane, J, Nottelet, B, “Toward Potent Antibiofilm Degradable Medical Devices: A Generic Method for the Antibacterial Surface Modification of Polylactide.” Acta Biomater., 9 (8) 7709–7718 (2013)

    Article  Google Scholar 

  40. Anthierens, T, Billiet, L, Devlieghere, F, Du Prez, F, “Poly(butylene adipate) Functionalized with Quaternary Phosphonium Groups as Potential Antimicrobial Packaging Material.” Innov. Food Sci. Emerg. Technol., 15 81–85 (2012)

    Article  CAS  Google Scholar 

  41. Gurol, I, Altinkok, C, Agel, E, Tasaltin, C, Durmuş, M, Acik, G, “Phthalocyanine Functionalized Poly(vinyl alcohol)s via CuAAC Click Chemistry and Their Antibacterial Properties.” J. Coat. Technol. Res., 17 (6) 1587–1596 (2020)

    Article  CAS  Google Scholar 

  42. Peng, K, Dai, X, Mao, H, Zou, H, Yang, Z, Tu, W, Hu, J, “Development of Direct Contact-Killing Non-leaching Antimicrobial Polyurethanes Through Click Chemistry.” J. Coat. Technol. Res., 15 (6) 1239–1250 (2018)

    Article  CAS  Google Scholar 

  43. Aynali, F, Balci, H, Doganci, E, Bulus, E, “Production and Characterization of Non-leaching Antimicrobial and Hydrophilic Polycaprolactone Based Nanofiber Mats.” Eur. Polym. J., 149 110368 (2021)

    Article  CAS  Google Scholar 

  44. Tiwari, A, Handbook of Antimicrobial Coatings. Elsevier, London (2017)

    Google Scholar 

  45. McDaniel, JA, Capone, DG, “A Comparison of Procedures for the Separation of Aquatic Bacteria from Sediments for Subsequent Direct Enumeration.” J. Microbiol. Methods, 3 (5–6) 291–302 (1985)

    Article  Google Scholar 

  46. Thomas, P, Sekhar, AC, Upreti, R, Mujawar, MM, Pasha, SS, “Optimization of Single Plate-Serial Dilution Spotting (SP-SDS) with Sample Anchoring as an Assured Method for Bacterial and Yeast cfu Enumeration and Single Colony Isolation from Diverse Samples.” Biotechnol. Rep., 8 45–55 (2015)

    Article  Google Scholar 

  47. Byun, Y, Whiteside, S, Thomas, R, Dharman, M, Hughes, J, Kim, YT, “The Effect of Solvent Mixture on the Properties of Solvent Cast Polylactic Acid (PLA) Film.” J. Appl. Polym. Sci., 124 (5) 3577–3582 (2012)

    Article  CAS  Google Scholar 

  48. Adjouman, YD, Nindjin, C, Tetchi, FA, Dalcq, A-C, Amani, NG, Sindic, M, “Water Vapor Permeability of Edible Films Based on Improved Cassava (Manihot esculenta Crantz) Native Starches.” J. Food Process. Technol., 8 665 (2017)

    Google Scholar 

  49. Teo, PS, Chow, WS, “Water Vapour Permeability of Poly(lactic acid)/Chitosan Binary and Ternary Blends.” Int. J. Appl. Sci. Technol., 7 (1) 23–27 (2014)

    Google Scholar 

  50. Ghasemlou, M, Aliheidari, N, Fahmi, R, Shojaee-Aliabadi, S, Keshavarz, B, Cran, MJ, Khaksar, R, “Physical, Mechanical and Barrier Properties of Corn Starch Films Incorporated with Plant Essential Oils.” Carbohydr. Polym., 98 (1) 1117–1126 (2013)

    Article  CAS  Google Scholar 

  51. Yıldırım-Yalçın, M, Şeker, M, Sadıkoğlu, H, “Development and Characterization of Edible Films Based on Modified Corn Starch and Grape Juice.” Food Chem., 292 6–13 (2019)

    Article  Google Scholar 

  52. ISO 10993–5: 2009, Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization, Geneva (2009)

  53. Liao, Y, Xu, Q, Zhang, J, Niu, J, Yuan, G, Jiang, Y, He, Y, Wang, X, “Cellular Response of Chondrocytes to Magnesium Alloys for Orthopedic Applications.” Int. J. Mol. Med., 36 (1) 73–82 (2015)

    Article  CAS  Google Scholar 

  54. Feoktistova, M, Geserick, P, Leverkus, M, “Crystal Violet Assay for Determining Viability of Cultured Cells.” Cold Spring Harbor Protocols, 2016 (4) 87379 (2016)

    Article  Google Scholar 

  55. Auras, R, “Poly(lactic acid).” Encycl. Polym. Sci. Technol., 5 74 (2002)

    Google Scholar 

  56. Demirci, F, Yildirim, K, Kocer, HB, “Antimicrobial Open-Cell Polyurethane Foams with Quaternary Ammonium Salts.” J. Appl. Polym. Sci., 135 (9) 45914 (2018)

    Article  Google Scholar 

  57. Sesal, NC, Kekeç, Ö, “Inactivation of Escherichia coli and Staphylococcus aureus by Ultrasound.” J. Ultrasound Med., 33 (9) 1663–1668 (2014)

    Article  Google Scholar 

  58. Matta, A, Rao, RU, Suman, K, Rambabu, V, “Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends.” Procedia Mater. Sci., 6 1266–1270 (2014)

    Article  CAS  Google Scholar 

  59. Eng, CC, Ibrahim, NA, Zainuddin, N, Ariffin, H, Yunus, WM, Wan, Z, Then, YY, “Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites.” Int. J. Polym. Sci., 2014 487 (2014)

    Article  Google Scholar 

  60. Liu, Z, Hu, D, Huang, L, Li, W, Tian, J, Lu, L, Zhou, C, “Simultaneous Improvement in Toughness, Strength and Biocompatibility of Poly(lactic acid) with Polyhedral Oligomeric Silsesquioxane.” Chem. Eng. J., 346 649–661 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks go to Asst. Prof. Tugrul Doruk from Ondokuz Mayıs University for his support about antimicrobial activity test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdinc Doganci or Hasan Sadikoglu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1272 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aynali, F., Doganci, E., Balci, H. et al. Preparation and characterization of poly(lactic acid)-based contact-active antimicrobial surfaces. J Coat Technol Res 20, 1459–1475 (2023). https://doi.org/10.1007/s11998-022-00758-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00758-z

Keywords

Navigation