Skip to main content
Log in

Superhydrophobic surfaces: a review on fundamentals, applications, and challenges

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Superhydrophobicity is the tendency of a surface to repel water drops. A surface is qualified as a superhydrophobic surface only if the surface possesses a high apparent contact angle (>150°), low contact angle hysteresis (<10°), low sliding angle (<5°) and high stability of Cassie model state. Efforts have been made to mimic the superhydrophobicity found in nature (for example, lotus leaf), so that artificial superhydrophobic surfaces could be prepared for a variety of applications. Due to their versatile use in many applications, such as water-resistant surfaces, antifogging surfaces, anti-icing surfaces, anticorrosion surfaces etc., many methods have been developed to fabricate them. In this article, the fundamental principles of superhydrophobicity, some of the recent works in the preparation of superhydrophobic surfaces, their potential applications, and the challenges confronted in their new applications are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)

    Article  Google Scholar 

  2. Forbes, P, “Self-Cleaning Materials.” Sci. Am., 299 89–95 (2008)

    Article  Google Scholar 

  3. Bhushan, B, “Biomimetics: Lessons from Nature—An Overview.” Philos. Trans. R. Soc. A, 367 1445–1486 (2009)

    Article  Google Scholar 

  4. Boinovich, LB, “Superhydrophobic Coatings as a New Class of Polyfunctional Materials.” Herald Russ. Acad. Sci., 83 (1) 8–18 (2013)

    Article  Google Scholar 

  5. Cheng, YT, Rodak, DE, “Is the Lotus Leaf Superhydrophobic?” Appl. Phys. Lett., 86 (144101) 1–3 (2005)

    Google Scholar 

  6. Nishimoto, S, Bhushan, B, “Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity.” RSC Adv., (2012). doi:10.1039/c2ra21260a

    Google Scholar 

  7. Wolfs, M, Darmanin, T, Guittard, F, “Superhydrophobic Fibrous Polymers.” Polym. Rev., 53 (3) 460–505 (2013)

    Article  Google Scholar 

  8. Koch, K, Barthlott, W, “Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials.” Philos. Trans. R. Soc. A, 367 1487–1509 (2009)

    Article  Google Scholar 

  9. Otten, A, Herminghaus, S, “How Plants Keep Dry: A Physicist’s Point of View.” Langmuir, 20 2405–2408 (2004)

    Article  Google Scholar 

  10. Gao, X, Jiang, L, “Water-Repellent Legs of Water Striders.” Nature, 432 36 (2004)

    Article  Google Scholar 

  11. Gould, P, “Smart, Clean Surfaces.” Mater. Today, 6 44–48 (2003)

    Google Scholar 

  12. Liu, K, Jiang, L, “Bio-Inspired Self-Cleaning Surfaces.” Bio-Inspir. Self-Clean. Surf., 42 231–263 (2012)

    Google Scholar 

  13. Boinovich, L, Emelyanenko, A, “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions.” Langmuir, 25 2907–2912 (2009)

    Article  Google Scholar 

  14. Ganesh, VA, Raut, HK, Nair, AS, Ramakrishna, S, “A Review on Self-Cleaning Coatings.” J. Mater. Chem., 21 16304–16322 (2011)

    Article  Google Scholar 

  15. Crick, CR, Parkin, IP, “Preparation and Characterisation of Super-Hydrophobic Surfaces.” Chem. Eur. J., 16 3568–3588 (2010)

    Article  Google Scholar 

  16. Parkin, IP, Palgrave, RG, “Self-Cleaning Coatings.” J. Mater. Chem., 15 1689–1695 (2005)

    Article  Google Scholar 

  17. Wang, S, Jiang, L, “Definition of Superhydrophobic States.” Adv. Mater., 19 3423–3424 (2007)

    Article  Google Scholar 

  18. Roach, P, Shirtcliffe, NJ, Newton, VMI, “Progress in Superhydrophobic Surface Development.” Soft Matter, 4 224–240 (2007)

    Article  Google Scholar 

  19. Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 457–460 (2003)

    Article  Google Scholar 

  20. Quere, D, Reyssat, M, “Non-adhesive Lotus and Other Hydrophobic Materials.” Philos. Trans. R. Soc. A, 366 1539–1556 (2008)

    Article  Google Scholar 

  21. Kim, SH, “Fabrication of Superhydrophobic Surfaces.” J. Adhes. Sci. Technol., 22 (3–4) 235–250 (2008)

    Article  Google Scholar 

  22. Shirtcliffe, NJ, McHale, G, Atherton, S, Newton, MI, “An Introduction to Superhydrophobicity.” Adv. Coll. Interface Sci., 161 124–138 (2010)

    Article  Google Scholar 

  23. Young, T, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)

    Article  Google Scholar 

  24. Blokbuis, EM, Shilkrot, Y, Widom, B, “Young’s Law with Gravity.” Mol. Phys., 86 (4) 891–899 (1995)

    Article  Google Scholar 

  25. Shikhmurzaev, YD, “On Young’s (1805) Equation and Finn’s (2006) ‘counterexample’.” Phys. Lett. A, 372 704–707 (2008)

    Article  Google Scholar 

  26. Blossey, R, “Self-Cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 301–306 (2003)

    Article  Google Scholar 

  27. Cassie, ABD, “Contact Angles.” Discuss. Faraday Soc., 3 11–16 (1948)

    Article  Google Scholar 

  28. Wang, XS, Cui, SW, Zhou, L, Xu, SH, Sun, ZW, Zhu, RZ, “A Generalized Young’s Equation for Contact Angles of Droplets on Homogeneous and Rough Substrates.” J. Adhes. Sci. Technol., 28 (2) 161–170 (2014)

    Article  Google Scholar 

  29. Song, J, Rojas, OJ, “Approaching Super-hydrophobicity from Cellulosic Materials: A Review.” Nord. Pulp Pap. Res. J., 28 (2) 216–238 (2013)

    Article  Google Scholar 

  30. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)

    Article  Google Scholar 

  31. Dorrer, C, Ruhe, J, “Some Thoughts on Superhydrophobic Wetting.” Soft Matter, 5 51–61 (2009)

    Article  Google Scholar 

  32. Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)

    Article  Google Scholar 

  33. McHale, G, “Cassie and Wenzel: Were They Really So Wrong?” Langmuir, 23 8200–8205 (2007)

    Article  Google Scholar 

  34. Bhushan, B, Jung, YC, “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction.” Prog. Mater. Sci., 56 1–108 (2011)

    Article  Google Scholar 

  35. Kreder, MJ, Alvarenga, J, Kim, P, Aizenberg, J, “Design of Anti-icing Surfaces: Smooth, Textured or Slippery?” Nat. Rev. Mater., 1 1–15 (2016)

    Article  Google Scholar 

  36. Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, (2016). doi:10.1039/C6TA07984A

    Google Scholar 

  37. Feng, L, Zhang, Y, Xi, J, Zhu, Y, Wang, N, Xia, F, Jiang, L, “Petal Effect: A Superhydrophobic State with High Adhesive Force.” Langmuir, 24 4114–4119 (2008)

    Article  Google Scholar 

  38. Miwa, M, Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces.” Langmuir, 16 5754–5760 (2000)

    Article  Google Scholar 

  39. Lam, CNC, Wu, R, Lia, D, Hair, ML, Neumann, AW, “Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis.” Adv. Coll. Interface. Sci., 96 169–191 (2002)

    Article  Google Scholar 

  40. Eral, HB, Mannetje, DJCM, Oh, JM, “Contact Angle Hysteresis: A Review of Fundamentals and Applications.” Colloid Polym. Sci., 291 247–260 (2013)

    Article  Google Scholar 

  41. Gao, L, McCarthy, TJ, “Contact Angle Hysteresis Explained.” Langmuir, 22 6234–6237 (2006)

    Article  Google Scholar 

  42. McHale, G, Shirtcliffe, NJ, Newton, MI, “Contact-Angle Hysteresis on Super-Hydrophobic Surfaces.” Langmuir, 20 10146–10149 (2004)

    Article  Google Scholar 

  43. Gao, L, McCarthy, TJ, “A Perfectly Hydrophobic Surface (θA/θR) 180°/180°).” J. Am. Chem. Soc., 128 9052–9053 (2006)

    Article  Google Scholar 

  44. Extrand, CW, Kumagai, Y, “Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape and Retentive Force.” J. Colloid Interface Sci., 170 515–521 (1994)

    Article  Google Scholar 

  45. Pierce, E, Carmona, FJ, Amirfazli, A, “Understanding of Sliding and Contact Angle Results in Tilted Plate Experiments.” Colloids Surf. A Physicochem. Eng. Asp., 323 73–82 (2008)

    Article  Google Scholar 

  46. Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Superhydrophobic Surfaces by Electrochemical Processes.” Adv. Mater., 25 1378–1394 (2013)

    Article  Google Scholar 

  47. Herminghaus, S, “Roughness-Induced Non-wetting.” Europhys. Lett., 52 (2) 165–170 (2000)

    Article  Google Scholar 

  48. Cao, L, Hu, HH, Gao, D, “Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials.” Langmuir, 23 4310–4314 (2007)

    Article  Google Scholar 

  49. Wu, J, Xia, J, Lei, W, Wang, B, “Fabrication of Superhydrophobic Surfaces with Double-Scale Roughness.” Mater. Lett., 64 1251–1253 (2010)

    Article  Google Scholar 

  50. Feng, L, Li, S, Li, Y, Li, H, Zhag, L, Zhai, J, Song, Y, Liu, B, Jiang, L, Daoben, Z, “Super-Hydrophobic Surfaces: From Natural to Artificial.” Adv. Mater., 14 (24) 1857–1860 (2002)

    Article  Google Scholar 

  51. Rusanov, AI, Shchekin, AK, Tatyanenko, DV, “The Line Tension and the Generalized Young Equation: the Choice of Dividing Surface.” Colloids Surf. A Physicochem. Eng. Asp., 250 263–268 (2004)

    Article  Google Scholar 

  52. White, LR, “On Deviations from Young’s Equation.” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases, 73 390–398 (1974)

    Google Scholar 

  53. Cain, JB, Francis, DW, Venter, RD, Neumann, AW, “Dynamic Contact Angles on Smooth and Rough Surfaces.” J. Colloid Interface Sci., 94 (1) 123–130 (1983)

    Article  Google Scholar 

  54. Bormashenko, E, “Young, Boruvka-Neumann, Wenzel and Cassie-Baxter Equations as the Transversality Conditions for the Variational Problem of Wetting.” Colloids Surf. A Physicochem. Eng. Asp., 345 163–165 (2009)

    Article  Google Scholar 

  55. He, B, Lee, J, Patankar, NA, “Contact Angle Hysteresis on Rough Hydrophobic Surfaces.” Colloids Surf. A Physicochem. Eng. Asp., 248 101–104 (2004)

    Article  Google Scholar 

  56. Tadmor, R, “Line Energy and the Relation Between Advancing, Receding, and Young Contact Angles.” Langmuir, 20 7659–7664 (2004)

    Article  Google Scholar 

  57. Joanny, JF, Gennes, PGD, “A Model for Contact Angle Hysteresis.” J. Chern. Phys., 81 (1) 552–562 (1984)

    Article  Google Scholar 

  58. Krasovitski, B, Marmur, A, “Drops Down the Hill: Theoretical Study of Limiting Contact Angles and the Hysteresis Range on a Tilted Plate.” Langmuir, 21 3881–3885 (2005)

    Article  Google Scholar 

  59. Li, W, Amirfazli, A, “A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces.” J. Colloid Interface Sci., 292 195–201 (2005)

    Article  Google Scholar 

  60. Marmur, A, “From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials.” Langmuir, 24 7573–7579 (2008)

    Article  Google Scholar 

  61. Shanahan, MER, “Simple Theory of ‘Stick-Slip’ Wetting Hysteresis.” Langmuir, 11 1041–1043 (1995)

    Article  Google Scholar 

  62. Yeh, KY, Chen, LJ, Chang, JY, “Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces.” Langmuir, 24 245–251 (2008)

    Article  Google Scholar 

  63. Gao, L, McCarthy, TJ, “The ‘Lotus Effect’ Explained: Two Reasons Why Two Length Scales of Topography Are Important.” Langmuir, 22 2966–2967 (2006)

    Article  Google Scholar 

  64. Wolansky, G, Marmur, A, “Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited.” Colloids Surf. A, 156 381–388 (1999)

    Article  Google Scholar 

  65. Bhushan, B, Jung, YC, “Wetting Study of Patterned Surfaces for Superhydrophobicity.” Ultramicroscopy, 107 1033–1041 (2007)

    Article  Google Scholar 

  66. Jung, YC, Bharat, B, “Contact Angle, Adhesion and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity.” Nanotechnology, 17 4970–4980 (2006)

    Article  Google Scholar 

  67. Pashinin, AS, Emel’yanenko, AM, Boinovich, LB, “Interaction Between Hydrophobic and Superhydrophobic Materials with Aqueous Media.” Prot. Met. Phys. Chem. Surf., 46 (6) 734–739 (2010)

    Article  Google Scholar 

  68. Quere, D, “Non-sticking Drops.” Rep. Prog. Phys., 68 2495–2532 (2005)

    Article  Google Scholar 

  69. Rioboo, R, Voue, M, Vaillant, A, Coninck, JD, “Drop Impact on Porous Superhydrophobic Polymer Surfaces.” Langmuir, 24 14074–14077 (2008)

    Article  Google Scholar 

  70. Erbil, HY, Cansoy, CE, “Range of Applicability of the Wenzel and Cassie–Baxter Equations for Superhydrophobic Surfaces.” Langmuir, 25 (24) 14135–14145 (2009)

    Article  Google Scholar 

  71. Jung, YC, Bhushan, B, “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces.” Langmuir, 24 6262–6269 (2008)

    Article  Google Scholar 

  72. Marmur, A, “The Lotus Effect: Superhydrophobicity and Metastability.” Langmuir, 20 3517–3519 (2004)

    Article  Google Scholar 

  73. Nosonovsky, M, Bhushan, B, “Superhydrophobic Surfaces and Emerging Applications: Non-adhesion, Energy, Green Engineering.” Curr. Opin. Colloid Interface Sci., 14 270–280 (2009)

    Article  Google Scholar 

  74. Papadopoulos, P, Mammen, L, Deng, X, Vollmer, D, Butt, HJ, “How Superhydrophobicity Breaks Down.” PNAS, 110 (9) 3254–3258 (2013)

    Article  Google Scholar 

  75. Porcheron, F, Monson, PA, “Mean-Field Theory of Liquid Droplets on Roughened Solid Surfaces: Application to Superhydrophobicity.” Langmuir, 22 1595–1601 (2006)

    Article  Google Scholar 

  76. Deng, X, Mammen, L, Butt, HJ, Vollmer, D, “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating.” Science, 335 67–70 (2012)

    Article  Google Scholar 

  77. Sas, I, Gorga, RE, Joines, JA, Thoney, KA, “Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced by Electrospinning.” J. Polym. Sci. B Polym. Phys., 50 824–845 (2012)

    Article  Google Scholar 

  78. Bhushan, B, Jung, YC, Koch, K, “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion.” Philos. Trans. R. Soc. A, 367 1631–1672 (2009)

    Article  Google Scholar 

  79. Tadanaga, K, Katata, N, Minami, T, “Super-Water-Repellent Al2O3 Coating Films with High Transparency.” J. Am. Ceram. Soc., 80 (4) 1040–1042 (1997)

    Article  Google Scholar 

  80. Nguyen, DD, Tai, NH, Lee, SB, Kuo, WS, “Superhydrophobic and Superoleophilic Properties of Graphene-Based Sponges Fabricated Using a Facile Dip Coating Method.” Energy Environ. Sci., 5 7908–7912 (2012)

    Article  Google Scholar 

  81. Hosono, E, Fujihara, S, Honma, I, Zhou, H, “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process.” J American Chemical Society, 127 13458–13459 (2005)

    Article  Google Scholar 

  82. Ozaydin-Ince, G, Coclite, AM, Gleason, KK, “CVD of Polymeric Thin Films: Applications in Sensors, Biotechnology, Microelectronics/Organic Electronics, Microfluidics, MEMS, Composites and Membranes.” Rep. Prog. Phys., 75 016501-1–016501-40 (2012)

    Article  Google Scholar 

  83. Li, XM, Reinhoudt, D, Calama, MC, “What Do We Need for Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007)

    Article  Google Scholar 

  84. Li, Y, Chen, S, Wu, M, Sun, J, “All Spraying Processes for the Fabrication of Robust, Self-Healing, Superhydrophobic Coatings.” Adv. Mater., 26 (20) 3344–3348 (2014)

    Article  Google Scholar 

  85. Li, Y, Li, L, Sun, J, “Bioinspired Self-Healing Superhydrophobic Coatings.” Angew. Chem., 122 6265–6269 (2010)

    Article  Google Scholar 

  86. Ariga, K, Yamauchi, Y, Rydzek, G, Ji, Q, Yonamine, Y, Wu, KCW, Hill, JP, “Layer-by-Layer Nanoarchitectonics: Invention, Innovation, and Evolution.” Chem. Lett., 43 (1) 36–68 (2013)

    Article  Google Scholar 

  87. Li, Y, Wang, X, Sun, J, “Layer-by-Layer Assembly for Rapid Fabrication of Thick Polymeric Films.” Chem. Soc. Rev., 41 5998–6009 (2012)

    Article  Google Scholar 

  88. Borges, J, Mano, JF, “Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers.” Chem. Rev., 114 (18) 8883–8942 (2014)

    Article  Google Scholar 

  89. Latthe, SS, Imai, H, Ganesan, V, Rao, AV, “Superhydrophobic Silica Films by Sol–Gel Co-precursor Method.” Appl. Surf. Sci., 256 217–222 (2009)

    Article  Google Scholar 

  90. Wang, X, Ding, B, Yu, J, Wang, M, “Engineering Biomimetic Superhydrophobic Surfaces of Electrospun Nanomaterials.” Nano Today, 6 510–530 (2011)

    Article  Google Scholar 

  91. Drelich, J, Marmur, A, “Physics and Applications of Superhydrophobic and Superhydrophilic Surfaces and Coatings.” Surface Innovations, 2 (S14) 211–227 (2014)

    Article  Google Scholar 

  92. Liu, J, Huang, W, Xing, Y, Li, R, Dai, J, “Preparation of Durable Superhydrophobic Surface by sol–gel Method with Water Glass and Citric Acid.” J. Sol. Gel. Sci. Technol., 58 18–23 (2011)

    Article  Google Scholar 

  93. Bellanger, H, Darmanin, T, Givenchy, ETD, Guittard, F, “Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories.” Chem. Rev., 114 2694–2716 (2014)

    Article  Google Scholar 

  94. Zhao, Y, Li, M, Lu, Q, Shi, Z, “Superhydrophobic Polyimide Films with a Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly.” Langmuir, 24 12651–12657 (2008)

    Article  Google Scholar 

  95. Xiu, Y, Liu, Y, Hess, DW, Wong, CP, “Mechanically Robust Superhydrophobicity on Hierarchically Structured Si Surfaces.” Nanotechnology, 21 155705-1–155705-5 (2010)

    Google Scholar 

  96. Cortese, B, D’Amone, S, Manca, M, Viola, I, Cingolani, R, Gigli, G, “Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces.” Langmuir, 24 2712–2718 (2008)

    Article  Google Scholar 

  97. Celia, E, Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Recent Advances in Designing Superhydrophobic Surfaces.” J. Colloid Interface Sci., 402 1–18 (2013)

    Article  Google Scholar 

  98. Shirtcliffe, NJ, McHale, G, Newton, MI, “The Superhydrophobicity of Polymer Surfaces: Recent Developments.” J. Polym. Sci. B Polym. Phys., 49 1203–1217 (2011)

    Article  Google Scholar 

  99. Ariga, K, Hill, JP, Ji, Q, “Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application.” Phys. Chem. Chem. Phys., 9 2319–2340 (2007)

    Article  Google Scholar 

  100. Ma, M, Hill, RM, “Superhydrophobic Surfaces.” Curr. Opin. Colloid Interface Sci., 11 193–202 (2006)

    Article  Google Scholar 

  101. Guo, LJ, “Recent Progress in Nanoimprint Technology and Its Applications.” J. Phys. D Appl. Phys., 37 R123–R141 (2004)

    Article  Google Scholar 

  102. Jafari, R, Asadollahi, S, Farzaneh, M, “Applications of Plasma Technology in Development of Superhydrophobic Surfaces.” Plasma Chem. Plasma Process., 33 177–200 (2013)

    Article  Google Scholar 

  103. Xue, CH, Jia, ST, Zhang, J, Ma, JZ, “Large-Area Fabrication of Superhydrophobic Surfaces for Practical Applications: An Overview.” Sci. Technol. Adv. Mater., 11 (3) 033002 (2010)

    Article  Google Scholar 

  104. Feng, L, Song, Y, Zhai, J, Liu, B, Xu, J, Jiang, L, Zhu, D, “Creation of a Superhydrophobic Surface from an Amphiphilic Polymer.” Angew. Chem., 115 (7) 824–826 (2003)

    Article  Google Scholar 

  105. Artus, GRJ, Jung, S, Zimmermann, J, Gautschi, HP, Marquardt, K, Seeger, S, “Silicone Nanofilaments and Their Application as Superhydrophobic Coatings.” Adv. Mater., 18 2758–2762 (2006)

    Article  Google Scholar 

  106. Bayer, IS, Caramia, V, Fragouli, D, Spano, F, Cingolanic, R, Athanassiou, A, “Electrically Conductive and High Temperature Resistant Superhydrophobic Composite Films from Colloidal Graphite.” J. Mater. Chem., 22 2057–2062 (2012)

    Article  Google Scholar 

  107. Dorrer, C, Ruhe, J, “Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces.” Adv. Mater., 20 159–163 (2008)

    Article  Google Scholar 

  108. Erbil, HY, Demirel, AL, Avci, Y, Mert, O, “Transformation of a Simple Plastic into a Superhydrophobic Surface.” Science, 2999 1377–1380 (2003)

    Article  Google Scholar 

  109. Qu, M, Zhang, B, Song, S, Chen, L, Zhang, J, Cao, X, “Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process.” Adv. Funct. Mater., 17 593–596 (2007)

    Article  Google Scholar 

  110. Fresnais, J, Chapel, JP, Epaillard, FP, “Synthesis of Transparent Superhydrophobic Polyethylene Surfaces.” Surf. Coat. Technol., 200 5296–5305 (2006)

    Article  Google Scholar 

  111. Guo, Z, Zhou, F, Hao, J, Liu, W, “Stable Biomimetic Super-Hydrophobic Engineering Materials.” J. Am. Chem. Soc., 127 15670–15671 (2005)

    Article  Google Scholar 

  112. Jiang, L, Zhao, Y, Zhai, J, “A Lotus-Leaf-Like superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics.” Angew. Chem., 116 4438–4441 (2004)

    Article  Google Scholar 

  113. Kamegawa, T, Shimizu, Y, Yamashita, H, “Superhydrophobic Surfaces with Photocatalytic SelfCleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene.” Adv. Mater., 24 (27) 3697–3700 (2012)

    Article  Google Scholar 

  114. Kang, M, Jung, R, Kim, HS, Jin, HJ, “Preparation of Superhydrophobic Polystyrene Membranes by Electrospinning.” Colloids Surf. A Physicochem. Eng. Asp., 313–314 411–414 (2008)

    Article  Google Scholar 

  115. Karunakaran, RG, Lu, CH, Zhang, Z, Yang, S, “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (<=100 nm).” Langmuir, 27 4594–4602 (2011)

    Article  Google Scholar 

  116. Kwon, Y, Patankar, N, Choi, J, Lee, J, “Design of Surface Hierarchy for Extreme Hydrophobicity.” Langmuir, 25 (11) 6129–6136 (2009)

    Article  Google Scholar 

  117. Larmour, IA, Bell, SEJ, Saunders, GC, “Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.” Angew. Chem., 119 1740–1742 (2007)

    Article  Google Scholar 

  118. Li, H, Liao, J, Du, Y, You, T, Liao, W, Wen, L, “Magnetic-Field-Induced Deposition to Fabricate Multifunctional Nanostructured Co, Ni, and CoNi Alloy Films as Catalysts, Ferromagnetic and Superhydrophobic Materials.” Chem. Commun., 49 1768–1770 (2013)

    Article  Google Scholar 

  119. Liu, J, Huang, X, Li, Y, Li, Z, Chi, Q, Li, G, “Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process.” Solid State Sci., 10 1568–1576 (2008)

    Article  Google Scholar 

  120. Nakajima, A, Hashimoto, K, Watanabe, T, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir, 16 7044–7047 (2000)

    Article  Google Scholar 

  121. Ou, J, Hu, W, Xue, M, Wang, F, Li, W, “Superhydrophobic Surfaces on Light Alloy Substrates Fabricated by a Versatile Process and Their Corrosion Protection.” ACS Appl. Mater. Interfaces, 5 3101–3107 (2013)

    Article  Google Scholar 

  122. Qu, M, Liu, S, He, J, Feng, J, Yao, Y, Hou, L, Ma, X, J. Mater. Sci., (2016). doi:10.1007/s10853-016-0134-y

    Google Scholar 

  123. Yuan, Z, Chen, H, Tang, J, Gong, H, Liu, Y, Wang, Z, Shi, P, Jide Zhang, J, Chen, X, “A Novel Preparation of Polystyrene Film with a Superhydrophobic Surface using a Template Method.” J. Phys. D Appl. Phys., 40 3485–3489 (2007)

    Article  Google Scholar 

  124. Zhang, L, Zhou, Z, Cheng, B, DeSimone, JM, Samulski, ET, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-Like Topography.” Langmuir, 22 8576–8580 (2006)

    Article  Google Scholar 

  125. Lee, Y, Ju, KY, Lee, JK, “Stable Biomimetic Superhydrophobic Surfaces Fabricated by Polymer Replication Method from Hierarchically Structured Surfaces of Al Templates.” Langmuir, 26 (17) 14103–14110 (2010)

    Article  Google Scholar 

  126. Pozzato, A, Zilio, SD, Fois, G, Vendramin, D, Mistura, G, Belotti, M, Chen, Y, Natali, M, “Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography.” Microelectron. Eng., 83 884–888 (2006)

    Article  Google Scholar 

  127. Ruan, M, Li, W, Wanga, B, Luo, Q, Ma, F, Yu, Z, “Optimal Conditions for the Preparation of Superhydrophobic Surfaces on Al Substrates Using a Simple Etching Approach.” Appl. Surf. Sci., 258 7031–7035 (2012)

    Article  Google Scholar 

  128. Qian, B, Shen, Z, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates.” Langmuir, 21 9007–9009 (2005)

    Article  Google Scholar 

  129. Barshilia, HC, Gupta, N, “Superhydrophobic Polytetrafluoroethylene Surfaces with Leaf-Like Micro-Protrusions Through Ar + O2 Plasma Etching Process.” Vacuum, 99 42–48 (2014)

    Article  Google Scholar 

  130. Yin, B, Fang, L, Hu, J, Tang, AQ, He, J, Mao, JH, “A Facile Method for Fabrication of Superhydrophobic Coating on Aluminum Alloy.” Surf. Interface Anal., 44 439–444 (2012)

    Article  Google Scholar 

  131. Lu, Y, Xu, W, Song, J, Liu, X, Xing, Y, Sun, J, “Preparation of Superhydrophobic Titanium Surfaces via Electrochemical Etching and Fluorosilane Modification.” Appl. Surf. Sci., 263 297–301 (2012)

    Article  Google Scholar 

  132. Saleema, N, Sarkar, DK, Paynter, RW, Chen, XG, “Superhydrophobic Aluminum Alloy Surfaces by a Novel One-Step Process.” Appl. Mater. Interfaces, 2 (9) 2500–2502 (2010)

    Article  Google Scholar 

  133. Ji, H, Chen, G, Yang, J, Hu, J, Song, H, Zhao, Y, “A Simple Approach to Fabricate Stable Superhydrophobic Glass Surfaces.” Appl. Surf. Sci., 266 105–109 (2013)

    Article  Google Scholar 

  134. Xue, CH, Zhang, P, Ma, JZ, Ji, PT, Ya-Ru Li, YR, Jia, ST, “Long-Lived Superhydrophobic Colorful Surfaces.” Chem. Commun., 49 3588–3590 (2013)

    Article  Google Scholar 

  135. Boinovich, LB, Emelyanenko, AM, Ivanov, VK, Pashinin, AS, “Durable Icephobic Coating for Stainless Steel.” ACS Appl. Mater. Interfaces, 5 2549–2554 (2013)

    Article  Google Scholar 

  136. Hejazi, V, Sobolev, K, Nosonovsky, M, “From Superhydrophobicity to Icephobicity: Forces and Interaction Analysis.” Sci. Rep., 3 (2194) 1–6 (2013)

    Google Scholar 

  137. Sarkar, DK, Farzaneh, M, “Superhydrophobic Coatings with Reduced Ice Adhesion.” J. Adhes. Sci. Technol., 23 (9) 1215–1237 (2009)

    Article  Google Scholar 

  138. He, M, Li, H, Wang, J, Song, Y, “Superhydrophobic Surface at Low Surface Temperature.” Appl. Phys. Lett., 98 093118-1–093118-3 (2011)

    Google Scholar 

  139. Kulinich, SA, Farhadi, S, Nose, K, Du, XW, “Superhydrophobic Surfaces: Are They Really Ice-Repellent?” Langmuir, 27 (1) 25–29 (2011)

    Article  Google Scholar 

  140. Cao, L, Jones, AK, Sikka, VK, Wu, J, Gao, D, “Anti-icing Superhydrophobic Coatings.” Langmuir, 25 (21) 12444–12448 (2009)

    Article  Google Scholar 

  141. Farhadi, S, Farzaneh, M, Kulinich, SA, “Anti-icing Performance of Superhydrophobic Surfaces.” Appl. Surf. Sci., 257 6264–6269 (2011)

    Article  Google Scholar 

  142. Park, YB, Im, H, Im, M, Choi, YK, “Self-Cleaning Effect of Highly Water-Repellent Microshell Structures for Solar Cell Applications.” J. Mater. Chem., 21 633–636 (2011)

    Article  Google Scholar 

  143. Darmanin, T, Guittard, F, “Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials.” J. Mater. Chem. A, 2 16319–16359 (2014)

    Article  Google Scholar 

  144. Liu, K, Jiang, L, “Metallic Surfaces with Special Wettability.” Nanoscale, 3 825–838 (2011)

    Article  Google Scholar 

  145. Nosonovsky, M, “Slippery When Wetted.” Nature, 477 412–413 (2011)

    Article  Google Scholar 

  146. Joly, L, Biben, T, “Wetting and Friction on Superoleophobic Surfaces.” Soft Matter, 5 2549–2557 (2009)

    Google Scholar 

  147. Xue, Z, Liu, M, Jiang, L, “Recent Developments in Polymeric Superoleophobic Surfaces.” J. Polym. Sci. B Polym. Phys., 50 (17) 1209–1224 (2012)

    Article  Google Scholar 

  148. Tuteja, A, Choi, W, Ma, M, Mabry, JM, Mazzella, SA, Rutledge, GC, McKinley, GH, Cohen, RE, “Designing Superoleophobic Surfaces.” Science, 318 1618–1622 (2007)

    Article  Google Scholar 

  149. Liu, X, Liang, Y, Zhou, F, Liu, W, “Extreme Wettability and Tunable Adhesion: Biomimicking Beyond Nature?” Soft Matter, 8 2070–2086 (2012)

    Article  Google Scholar 

  150. Verho, T, Bower, C, Andrew, P, Franssila, S, Ikkala, O, Ras, RHA, “Mechanically Durable Superhydrophobic Surfaces.” Adv. Mater., 23 673–678 (2011)

    Article  Google Scholar 

  151. Ishizaki, T, Masuda, Y, Sakamoto, M, “Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution.” Langmuir, 27 4780–4788 (2011)

    Article  Google Scholar 

  152. Liu, H, Szunerits, S, Xu, W, Boukherroub, R, “Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers.” ACS Appl. Mater. Interfaces., 1 (6) 1150–1153 (2009)

    Article  Google Scholar 

  153. Ma, J, Zhang, XY, Wang, DP, Zhao, DQ, Ding, DW, Liu, K, Wang, WH, “Superhydrophobic Metallic Glass Surface with Superior Mechanical Stability and Corrosion Resistance.” Appl. Phys. Lett., 104 173701-1–173701-4 (2014)

    Google Scholar 

  154. Samaha, MA, Tafreshi, HV, Hak, MG, “Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine.” C. R. Mec., 340 18–34 (2012)

    Article  Google Scholar 

  155. Bixler, GD, Bhushan, B, “Biofouling: Lessons from Nature.” Philos. Trans. R. Soc. A, 370 2381–2417 (2012)

    Article  Google Scholar 

  156. Genzer, J, Efimenko, K, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review.” J. Bioadhes. Biofilm Res., 22 (5) 339–360 (2006)

    Article  Google Scholar 

  157. Marmur, A, “Super-Hydrophobicity Fundamentals: Implications to Biofouling Prevention.” Biofouling, 22 (2) 107–115 (2006)

    Article  Google Scholar 

  158. Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)

    Article  Google Scholar 

  159. Howarter, JA, Youngblood, JP, “Self-Cleaning and Next Generation Anti-fog Surfaces and Coatings.” Macromol. Rapid Commun., 29 455–466 (2008)

    Article  Google Scholar 

  160. Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-fogging.” J. Mater. Chem., 22 7420–7426 (2012)

    Article  Google Scholar 

  161. Chen, Y, Zhang, Y, Shi, L, Li, J, Xin, Y, Yang, T, Guo, Z, “Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-fogging.” Appl. Phys. Lett., 101 033701 (2012)

    Article  Google Scholar 

  162. Wang, T, Hu, X, Dong, S, “A General Route to Transform Normal Hydrophilic Cloths into Superhydrophobic Surfaces.” Chem. Commun., 18 1849–1851 (2007)

    Article  Google Scholar 

  163. Zimmermann, J, Reifler, FA, Fortunato, G, Gerhardt, LC, Seeger, S, “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles.” Adv. Funct. Mater., 18 3662–3669 (2008)

    Article  Google Scholar 

  164. Wang, H, Xue, Y, Ding, J, Feng, L, Wang, X, Lin, T, “Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane.” Angew. Chem. Int. Ed., 50 11433–11436 (2011)

    Article  Google Scholar 

  165. Chen, C, Xu, J, Zhang, Q, Ma, Y, Zhou, L, Wang, M, “Superhydrophobic Materials as Efficient Catalysts for Hydrocarbon Selective Oxidation.” Chem. Commun., 47 1336–1338 (2011)

    Article  Google Scholar 

  166. Zhang, YL, Xia, H, Kim, E, Sun, HB, “Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties.” Soft Matter, 8 11217–11231 (2012)

    Article  Google Scholar 

  167. Xiu, Y, Zhang, S, Yelundur, V, Rohatgi, A, Hess, DW, Wong, CP, “Superhydrophobic and Low Light Reflectivity Silicon Surfaces Fabricated by Hierarchical Etching.” Langmuir, 24 10421–10426 (2008)

    Article  Google Scholar 

  168. Li, B, Li, L, Wu, L, Zhang, J, Wang, A, “Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water.” ChemPlusChem, 79 850–856 (2014)

    Article  Google Scholar 

  169. Su, C, Li, Y, Dai, Y, Gao, F, Tang, K, Cao, H, “Fabrication of Three-Dimensional Superhydrophobic Membranes with High Porosity via Simultaneous Electrospraying and Electrospinning.” Mater. Lett., 170 67–71 (2016)

    Article  Google Scholar 

  170. Simpson, JT, Hunter, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Prog. Phys., 78 086501-1–086501-14 (2015)

    Article  Google Scholar 

  171. Sun, T, Tan, H, Han, D, Fu, Q, Jiang, L, “No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces.” Small, 1 (10) 959–963 (2005)

    Article  Google Scholar 

  172. Ueda, E, Levkin, PA, “Emerging Applications of Superhydrophilic Superhydrophobic Micropatterns.” Adv. Mater., 25 (9) 1234–1247 (2013)

    Article  Google Scholar 

  173. Tadanaga, K, Morinaga, J, Matsuda, A, Minami, T, “Superhydrophobic-Superhydrophilic Micropatterning on Flower like Alumina Coating Film by the Sol–Gel Method.” Chem. Mater., 12 590–592 (2000)

    Article  Google Scholar 

  174. Bocquet, L, Lauga, E, “A Smooth Future?” Nat. Mater., 10 334–337 (2011)

    Article  Google Scholar 

  175. Wang, X, Liu, X, Zhou, F, Liu, W, “Self-Healing Superamphiphobicity.” Chem. Commun., 47 2324–2326 (2011)

    Article  Google Scholar 

  176. Ma, M, Hill, RM, Rutledge, GC, “A Review of Recent Results on Superhydrophobic Materials Based on Micro- and Nanofibers.” J. Adhes. Sci. Technol., 22 (15) 1799–1817 (2008)

    Article  Google Scholar 

  177. Nakajima, A, Hashimoto, K, Watanabe, T, “Recent Studies on Super-Hydrophobic Films.” Mon. Chem., 132 31–41 (2001)

    Article  Google Scholar 

  178. Nakajima, A, Abe, K, Hashimoto, K, Watanabe, T, “Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission.” Thin Solid Films, 376 140–143 (2000)

    Article  Google Scholar 

  179. Solga, A, Cerman, Z, Striffler, BF, Spaeth, M, Barthlott, W, “The Dream of Staying Clean: Lotus and Biomimetic Surfaces.” Bioinspir. Biomim., 2 S126–S134 (2007)

    Article  Google Scholar 

  180. Tian, X, Verho, T, Ras, RHA, “Moving Superhydrophobic Surfaces Toward Real-World Applications.” Science, 352 (6282) 142–143 (2016)

    Article  Google Scholar 

  181. Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate.” Adv. Mater., 11 (16) 1365–1368 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeya Jeevahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevahan, J., Chandrasekaran, M., Britto Joseph, G. et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J Coat Technol Res 15, 231–250 (2018). https://doi.org/10.1007/s11998-017-0011-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-0011-x

Keywords

Navigation