Skip to main content

Advertisement

Log in

Development of direct contact-killing non-leaching antimicrobial polyurethanes through click chemistry

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

A robust, efficient, and orthogonal click chemistry (copper (I)-catalyzed alkyne-azide cycloaddition) was used to prepare an antimicrobial polymer and precisely control the conjugation ratio of antibiotic molecules to polymer. Antimicrobial polyurethanes with pendant benzisothiazolinone (PU-BIT) were synthesized using click chemistry to connect azide functional polyurethane (PU-N3) and alkyne functional benzisothiazolinone (BIT-Al). The direct contact-killing and non-leaching antimicrobial properties of PU-BIT were verified by both antimicrobial drop and disk diffusion. This approach provides a new methodology and platform for the development of contact-killing and non-leaching antimicrobial materials for a variety of practical applications. This research is the first to demonstrate that the broad-spectrum BIT antibiotic is a selective antibiotic for Gram-positive bacteria when covalently linked to a polymer. PU-BIT film containing 0.8 wt% BIT exhibited a selective antimicrobial performance with bactericidal efficacy of 91.6% and 30% against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively. The mechanism of the selective antimicrobial activity of PU-BIT is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Richards, MJ, Edwards, JR, Culver, DH, Gaynes, RP, “Nosocomial Infections in Medical Intensive Care Units in the United States.” Crit. Care Med., 27 (5) 887–892 (1999)

    Article  Google Scholar 

  2. Kenawy, E-R, Worley, SD, Broughton, R, “The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.” Biomacromolecules, 8 (5) 1359–1384 (2007)

    Article  Google Scholar 

  3. Jain, A, Duvvuri, LS, Farah, S, Beyth, N, Domb, AJ, Khan, W, “Antimicrobial Polymers.” Adv. Healthc. Mater., 3 (12) 1969–1985 (2014)

    Article  Google Scholar 

  4. Siedenbiedel, F, Tiller, JC, “Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles.” Polymers, 4 (4) 46–71 (2012)

    Article  Google Scholar 

  5. Dizman, B, Elasri, MO, Mathias, LJ, “Synthesis, Characterization, and Antibacterial Activities of Novel Methacrylate Polymers Containing Norfloxacin.” Biomacromolecules, 6 514–520 (2005)

    Article  Google Scholar 

  6. Turos, E, Shim, JY, Wang, Y, Greenhalgh, K, Reddy, GS, Dickey, S, Lim, DV, “Antibiotic-Conjugated Polyacrylate Nanoparticles: New Opportunities for Development of Anti-MRSA Agents.” Bioorg. Med. Chem. Lett., 17 (1) 53–56 (2007)

    Article  Google Scholar 

  7. Schmidt, M, Bast, LK, Lanfer, F, Richter, L, Hennes, E, Seymen, R, Krumm, C, Tiller, JC, “Poly(2-oxazoline)–Antibiotic Conjugates with Penicillins.” Bioconjugate Chem., 28 (9) 2440–2451 (2017)

    Article  Google Scholar 

  8. Pichavant, L, Carrie, H, Nguyen, MN, Plawinski, L, Durrieu, MC, Heroguez, V, “Vancomycin Functionalized Nanoparticles for Bactericidal Biomaterial Surfaces.” Biomacromolecules, 17 (4) 1339–1346 (2016)

    Article  Google Scholar 

  9. Schmidt, M, Harmuth, S, Barth, ER, Wurm, E, Fobbe, R, Sickmann, A, Krumm, C, Tiller, JC, “Conjugation of Ciprofloxacin with Poly(2-oxazoline)s and Polyethylene Glycol via End Groups.” Bioconjug. Chem., 26 (9) 1950–1962 (2015)

    Article  Google Scholar 

  10. Kawabata, N, “Capture of Micro-Organisms and Viruses by Pyridinium-Type Polymers and Application to Biotechnology and Water Purification.” Prog. Polym. Sci., 17 (1) 1–34 (1992)

    Article  Google Scholar 

  11. Katz, L, Schroeder, W, “Process for the Production of N-benzylidene and N-quinolylmethylene-substituted 2-Aminobenz-isothiazolones.” US 2767172, (1956)

  12. Goerdeler, J, Mittler, W, “Über Isothiazole, III. Synthese von 3-Hydroxy-, 3-Alkoxy- und 3-Amino-isothiazolen.” Chem. Ber., 96 944–954 (1963)

    Article  Google Scholar 

  13. Crow, WD, Leonard, NJ, “3-Isothiazolone-cis-3-Thiocyanoacrylamide Equilibria.” J. Org. Chem., 30 (8) 2660–2665 (1965)

    Article  Google Scholar 

  14. Lewis, SN, Grove, W, Miller, GA and Law, AB, “Certain 2-carbamoyl-3-isothiazolenes.” US 3523121, (1970)

  15. Lewis, SN, Miller, GA, Hausman, M, Szamborski, EC, “Isothiazoles I: 4-Isothiazolin-3-Ones. A General Synthesis from 3,3′-Dithiodipropionamides.” J. Heterocycl. Chem., 8 571–580 (1971)

    Article  Google Scholar 

  16. Williams, TM, “The Mechanism of Action of Isothiazolone Biocides.” Powerpl. Chem., 9, 14–22 (2007)

    Google Scholar 

  17. Morley, JO, Oliver, AJ, Charlton, MH, “Theoretical Studies on the Biocidal Activity of 5-Chloro-3-Isothiazolone.” J. Mol. Struct. Theochem, 429 103–110 (1998)

    Article  Google Scholar 

  18. Khalaj, A, Adibpour, N, Shahverdi, AR, Daneshtalab, M, “Synthesis and Antibacterial Activity of 2-(4-Substituted Phenyl)-3(2H)-Isothiazolones.” Eur. J. Med. Chem., 39 (8) 699–705 (2004)

    Article  Google Scholar 

  19. Huang, C-Y, Hsieh, S-P, Kuo, P-A, Jane, W-N, Tu, J, Wang, Y-N, Ko, C-H, “Impact of Disinfectant and Nutrient Concentration on Growth and Biofilm Formation for a Pseudomonas Strain and the Mixed Cultures from a Fine Papermachine System.” Int. Biodeterior. Biodegrad., 63 (8) 998–1007 (2009)

    Article  Google Scholar 

  20. Lin, QB, Wang, TJ, Song, H, Li, B, “Analysis of Isothiazolinone Biocides in Paper for Food Packaging by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry.” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess, 27 (12) 1775–1781 (2010)

    Article  Google Scholar 

  21. Lin, QB, Wang, TJ, Song, H, Wang, RZ, “Kinetic Migration of Isothiazolinone Biocides from Paper Packaging to Tenax and Porapak.” Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess, 28 (9) 1294–1301 (2011)

    Article  Google Scholar 

  22. Thomas, KV, Brooks, S, “The Environmental Fate and Effects of Antifouling Paint Biocides.” Biofouling, 26 (1) 73–88 (2010)

    Article  Google Scholar 

  23. Yang, JX, You, CH, Wang, XH, Lin, Q, “The Synthesis and Bioactivities of 2-Hydroxyethyl Benzo[d] Isothiazole-3(2H)-One Marine Antifouling Paints.” Advanced Materials Research, 646 24–29 (2013)

    Article  Google Scholar 

  24. Schoknecht, U, Wegner, R, Horn, W, Jann, O, “Emission of Biocides from Treated Materials Test Procedures for Water and Air.” Environ. Sci. Pollut., 10 154–161 (2003)

    Article  Google Scholar 

  25. Bordi, F, Mor, M, Plazzi, PV, Silva, C, Morini, G, Impicciatore, M, Barocelli, E, Chiavarini, M, “4-(1,2-Benzisothiazol-3-yl)alkanoic and Phenylalkanoic Acids: Synthesis and Anti-inflammatory, Analgesic and Antipyretic Activities.” Farmaco, 47 551–565 (1992)

    Google Scholar 

  26. Vicinia, P, Amorettia, L, Ballabenib, V, Tognolinib, M, Barocelli, E, “2-Amino-Benzo[d]Isothiazol-3-One Derivatives_ Synthesis and Assessment of Their Antiplatelet_Spasmolytic Effects.” Bioorganic Med. Chem., 8 2355–2358 (2000)

    Article  Google Scholar 

  27. Ballabeni, V, Tognolini, M, Calcina, F, Impicciatore, M, Vicini, P, Barocelli, E, “New Insights into the Pharmacological Properties of Potent Antiplatelet 2-Amino-Benzo [d] Isothiazol-3-One Derivatives.” Pharmacol. Res., 46 389–393 (2002)

    Article  Google Scholar 

  28. Moradi, M, Duan, J, Du, X, “Investigation of the Effect of 4,5-Dichloro-2-n-Octyl-4-Isothiazolin-3-One Inhibition on the Corrosion of Carbon Steel in Bacillus sp. Inoculated Artificial Seawater.” Corros. Sci., 69 338–345 (2013)

    Article  Google Scholar 

  29. Collier, PJ, Ramsey, AJ, Austin, P, Gilbert, P, “Growth Inhibitory and Biocidal Activity of Some Isothiazolone Biocides.” J. Appl. Bacteriol., 69 569–577 (1990)

    Article  Google Scholar 

  30. Chapman, JS, “Biocide Resistance Mechanisms.” Int. Biodeterior. Biodegrad., 51 (2) 133–138 (2003)

    Article  Google Scholar 

  31. Freeman, S, “Allergic Contact Dermatitis Due to 1,2-Benzisothiazolin-3-One in Gum Arabic.” Contact Dermat., 11 (3) 146–149 (1984)

    Article  Google Scholar 

  32. Kagano, H, Goda, H and Sakaue, S, Method for producing alkylsulfinylbenamides and 1-2 benzisothiazol-3-ones. US 5744609, (1998)

  33. Shimizu, M, Takagi, T, Shibakami, M, “Sythesis of 2-(2-Alkoxycarbonyl-phenylthio)-1,2-Benzisothiazolin-3-Ones from 2-Sulfenamoylbenzoates.” Heterocycles, 53 (12) 2803–2808 (2000)

    Article  Google Scholar 

  34. Fuller, SJ, Denyer, SP, Hugo, WB, Pemberton, D, Woodcock, PM, Buckley, AJ, “The Mode of Action of l,2-Benzisothiazolin-3-One On Staphylococcus Aureus.” Lett. Appl. Microbiol., 1 (1) 13–15 (1985)

    Article  Google Scholar 

  35. Collier, PJ, Austin, P, Gilbert, P, “Association and Distribution of Some Isothiazolone Biocides into E. coli ATCC 8739 and S. pombe.” Int. J. Pharm., 66 201–206 (1990)

    Article  Google Scholar 

  36. Diehl, MA, Chapman, JS, “Association of the Biocide 5-Chloro-2-Methyl-Isothiazol-3-One with Pseudomonas aeruginosa and Pseudomonas fluorescens.” Int. Biodeterior. Biodegrad., 44 191–199 (1999)

    Article  Google Scholar 

  37. Zhulenkovs, D, Rudevica, Z, Jaudzems, K, Turks, M, Leonchiks, A, “Discovery and Structure-Activity Relationship Studies of Irreversible Benzisothiazolinone-Based Inhibitors Against Staphylococcus aureus Sortase A Transpeptidase.” Bioorg. Med. Chem., 22 (21) 5988–6003 (2014)

    Article  Google Scholar 

  38. Chung, Y-C, Kim, HY, Choi, JW and Chun, BC, “Preparation of Water-Compatible Antifungal Polyurethane with Grafted Benzimidazole as the Antifungal Agent.” J. Appl. Polym. Sci., 132 (14) 41676–41684 (2015)

    Article  Google Scholar 

  39. Włodarczyk, D, Urban, M, Strankowski, M, “Chemical Modifications of Graphene and Their Influence on Properties Of Polyurethane Composites: A Review.” Phys. Scr., 91 (10) 104003 (2016)

    Article  Google Scholar 

  40. Chung, Y-C, Jo, SH, Kim, HY, Chun, BC, “Characterization and Effect of Covalently Grafted Benzoic Acid on the Low Temperature Flexibility and Water Vapor Permeability of a Polyurethane Copolymer.” Polym. Plast. Technol. Eng., 55 (4) 356–367 (2015)

    Article  Google Scholar 

  41. Fik, CP, Konieczny, S, Pashley, DH, Waschinski, CJ, Ladisch, RS, Salz, U, Bock, T, Tiller, JC, “Telechelic Poly(2-oxazoline)s with a Biocidal and a Polymerizable Terminal as Collagenase Inhibiting Additive for Long-Term Active Antimicrobial.” Dental Materials, 14 (11) 1569–1579 (2014)

    Google Scholar 

  42. Siedenbiedel, F, Fuchs, A, Moll, T, Weide, M, Breves, R, Tiller, JC, “Star-Shaped Poly(styrene)-block-Poly(4-vinyl-N-methylpyridiniumiodide) for Semipermanent Antimicrobial Coatings.” Macromol. Biosci., 13 (10) 1447–1455 (2013)

    Article  Google Scholar 

  43. Vitali, T, Amoretti, L, Mossini, F, “Preparation and Antifungal Effect of Bis-(2-Carboxyamidophenyl) Disulphides and of 1, 2-Benzoisothiazoline-3-One Methoxy Substitutes.” Farmaco, Edizione scientifica, 23 (5) 466–476 (1968)

    Google Scholar 

  44. Ponci, R, Glaldif, F, Baruffini, A, “2,2-Dicarbamido-5,5-Dinitrodiphenyldisulfides and 6-Nitro-1,2-Benzoisothiazolones.” Farmaco Edizione Scientifica, 19 254–268 (1964)

    Google Scholar 

  45. Ponci, R, Vitali, T, Mossini, F, “Bis-(2-Carboxyphenyl) Disulphidediamides and Benzoisothiazolinonic Compounds. Influence of Butylic Residues in the Molecule on the Antifungal Acitivity.” Il Farmaco, Edizione Scientifica, 22 (12) 999–1010 (1967)

    Google Scholar 

  46. Carmellino, ML, Pagani, G, Pregnolato, M, Terreni, M, Pastoni, F, “Antimicrobial Activity of Fluorinated 1,2-Benzisothiazol-3(2H)-Ones and 2,2′-Dithiobis(Benzamides).” Eur. J. Med. Chem., 29 (10) 743–751 (1994)

    Article  Google Scholar 

  47. Hu, J, Peng, K, Guo, J, Shan, D, Kim, GB, Li, Q, Gerhard, E, Zhu, L, Tu, W, Lv, W, Hickner, MA, Yang, J, “Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.” ACS Appl. Mater. Interfaces, 8 (27) 17499–17510 (2016)

    Article  Google Scholar 

  48. Guo, J, Xie, Z, Tran, RT, Xie, D, Jin, D, Bai, X, Yang, J, “Click Chemistry Plays a Dual Role in Biodegradable Polymer Design.” Adv. Mater., 26 (12) 1906–1911 (2014)

    Article  Google Scholar 

  49. Karamdoust, S, Yu, B, Bonduelle, CV, Liu, Y, Davidson, G, Stojcevic, G, Yang, J, Lau, WM, Gillies, ER, “Preparation of Antibacterial Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Polymer Thin Films.” J. Mater. Chem., 22 (11) 4881 (2012)

    Article  Google Scholar 

  50. Lin, JJ, Lin, WC, Li, SD, Lin, CY, Hsu, SH, “Evaluation of the Antibacterial Activity and Biocompatibility for Silver Nanoparticles Immobilized on Nano Silicate Platelets.” ACS Appl. Mater. Interfaces, 5 (2) 433–443 (2013)

    Article  Google Scholar 

  51. Pielichowska, K, Bieda, J, Szatkowski, P, “Polyurethane/Graphite Nano-Platelet Composites for Thermal Energy Storage.” Renew. Energy, 91 456–465 (2016)

    Article  Google Scholar 

  52. Kutty, SKN, Chaki, TK, Nando, GB, “Thermal Degradation of Short Kevlar Fibrethermoplastic Polyurethane Composite.” Polym. Degrad. Stab., 38 (3) 187–192 (1992)

    Article  Google Scholar 

  53. Petrovic, ZS, Zavargo, Z, Flynn, JH, Macknight, WJ, “Thermal Degradation of Segmented Polyurethanes.” J. Appl. Polym. Sci., 51 (6) 1087–1095 (1994)

    Article  Google Scholar 

  54. Gradwell, MHS, Hourston, DJ, Pabunruang, T, Schafer, F-U, Reading, M, “High-Resolution Thermogravimetric Analysis of Polyurethane/Poly(Ethyl Methacrylate) Interpenetrating Polymer Networks.” J. Appl. Polym. Sci., 70 (2) 287–295 (1998)

    Article  Google Scholar 

  55. Guohua, Z, Ya, L, Cuilan, F, Min, Z, Caiqiong, Z, Zongdao, C, “Water Resistance, Mechanical Properties and Biodegradability of Methylated-Cornstarch/Poly(Vinyl Alcohol) Blend Film.” Polym. Degrad. Stab., 91 (4) 703–711 (2006)

    Article  Google Scholar 

  56. Zharov, VP, Mercer, KE, Galitovskaya, EN, Smeltzer, MS, “Photothermal Nanotherapeutics and Nanodiagnostics for Selective Killing of Bacteria Targeted with Gold Nanoparticles.” Biophys. J., 90 (2) 619–627 (2006)

    Article  Google Scholar 

  57. Borgna, P, Carmellino, ML, Natangelo, M, Pagani, G, Pastoni, F, Pregnolato, M, Terreni, M, “Antimicrobial Activity of N-Hydroxyalkyl 1,2-Benzisothiazol-3(2H)-Ones and Their Thiono Analogues.” Eur. J. Med. Chem., 31 919–925 (1996)

    Article  Google Scholar 

  58. Schneewind, O, Mazmanian, SK, Ton-that, H, “Sortase-Catalysed Anchoring of Surface Proteins to the Cell Wall of Staphylococcus Aureus.” Mol. Microbiol., 40 (5) 1049–1057 (2001)

    Article  Google Scholar 

  59. Pallen, MJ, Chaudhuri, RR, Henderson, IR, “Genomic Analysis of Secretion Systems.” Curr. Opin. Microbiol., 6 (5) 519–527 (2003)

    Article  Google Scholar 

  60. Cozzi, R, Malito, E, Nuccitelli, A, D’Onofrio, M, Martinelli, M, Ferlenghi, I, Grandi, G, Telford, JL, Maione, D, Rinaudo, CD, “Structure Analysis and Site-Directed Mutagenesis of Defined Key Residues and Motives for Pilus-Related Sortase C1 in Group B Streptococcus.” FASEB J., 25 1874–1886 (2011)

    Article  Google Scholar 

  61. Sun, X, Zhang, L, Cao, Z, Deng, Y, Liu, L, Fong, H, Sun, Y, “Electrospun Composite Nanofiber Fabrics Containing Uniformly Dispersed Antimicrobial Agents as an Innovative Type of Polymeric Materials with Superior Antimicrobial Efficacy.” ACS Appl. Mater. Interfaces, 2 (4) 952–956 (2010)

    Article  Google Scholar 

  62. Strassburg, A, Petranowitsch, J, Paetzold, F, Krumm, C, Peter, E, Meuris, M, Köller, M, Tiller, JC, “Cross-Linking of a Hydrophilic, Antimicrobial Polycation Toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties.” ACS Appl. Mater. Interfaces, 9 (42) 36573–36582 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21762036) and Foundation for High-level Talents in Qiannan Normal University for Nationalities and Qiankehe LH [2015]7706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqing Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, K., Dai, X., Mao, H. et al. Development of direct contact-killing non-leaching antimicrobial polyurethanes through click chemistry. J Coat Technol Res 15, 1239–1250 (2018). https://doi.org/10.1007/s11998-018-0068-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-0068-1

Keywords

Navigation