Skip to main content

Advertisement

Log in

Antimicrobial polymers: mechanism of action, factors of activity, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Complex epidemiological situation, nosocomial infections, microbial contamination, and infection risks in hospital and dental equipment have led to an ever-growing need for prevention of microbial infection in these various areas. Macromolecular systems, due to their properties, allow one to efficiently use them in various fields, including the creation of polymers with the antimicrobial activity. In the past decade, the intensive development of a large class of antimicrobial macromolecular systems, polymers, and copolymers, either quaternized or functionalized with bioactive groups, has been continued, and they have been successfully used as biocides. Various permanent microbicidal surfaces with non-leaching polymer antimicrobial coatings have been designed. Along with these trends, new moderately hydrophobic polymer structures have been synthesized and studied, which contain protonated primary or secondary/tertiary amine groups that exhibited rather high antimicrobial activity, often unlike their quaternary analogues. This mini-review briefly highlights and summarizes the results of studies during the past decade and especially in recent years, which concern the mechanism of action of different antimicrobial polymers and non-leaching microbicidal surfaces, and factors influencing their activity and toxicity, as well as major applications of antimicrobial polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It should be emphasized that poly(4-vinylpyridine) (PVP), prepared by free radical polymerization, should have medium polydispersity (PDI), i.e., the ratio M w/M n, where M n is the number-average molecular weight: 1.5 < PDI < 2. At the same time, branched PEI, which is obtained by cationic step polymerization, has large PDI for polymers with high MWs. According to the data of Sigma-Aldrich Chemical Co, the values are as follows: M w 2 kDa (by LS), M n 1.8 kDa (by GPC), PDI = 1.11; M w 25 kDa (by LS), M n 10 kDa (by GPC), PDI = 2.5; M w 750 kDa (by LS), M n 60 kDa (by GPC), PDI = 12.5. Thus, antimicrobial effect, which is observable for PEI with M w ≥25 kDa, should be averaged over the effect of polymers with molecular weights M wM n within polydispersity range.

References

  • AL-Badri ZM, Som A, Lyon S, Nelson CF, Nusslein K, Tew GN (2008) Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules 9:2805–2810

    Article  CAS  Google Scholar 

  • Albert M, Feiertag P, Hayn G, Saf R, Hönig H (2003) Structure–activity relationships of oligoguanidines—influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromolecules 4:1811–1817

    Article  CAS  Google Scholar 

  • Allison BC, Applegate BM, Youngblood JP (2007) Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules 8:2995–2999

    Article  CAS  Google Scholar 

  • Afinogenov GE, Panarin EF (1993) Antimicrobial polymers. Gippokrat, St. Petersburg, p 264 (in Russian)

    Google Scholar 

  • Berkovich AK, Orlov VN, Melik-Nubarov NS (2009) Interaction of polyanions with electroneutral liposomes in a slightly acidic medium. Polym Sci Ser A 51:648–657

    Article  Google Scholar 

  • Block SS (ed) (2001) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams & Wilkins, New York

  • Bordenave N, Grelier S, Coma V (2010) Hydrophobization and antimicrobial activity of chitosan and paper-based packaging material. Biomacromolecules 11:88–96

    Article  CAS  Google Scholar 

  • Broxton P, Woodcock PM, Gilbert P (1983) A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J Appl Bacteriol 54:345–353

    CAS  Google Scholar 

  • Broxton P, Woodcock PM, Heatley M, Gilbert P (1984) Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol 57:115–124

    CAS  Google Scholar 

  • Carrier D, Dufourcq J, Faucon J-F, Pezolet M (1985) A fluorescence investigation of the effects of polylysine on dipalmitoylphosphatidylglycerol bilayers. Biochim Biophys Acta 820:131–139

    Article  CAS  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  Google Scholar 

  • Chen Z, Sun YY (2006) N-halamine-based antimicrobial additives for polymers: preparation, characterization, and antimicrobial activity. Ind Eng Chem Res 45:2634–2640

    Article  CAS  Google Scholar 

  • Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL (2000) Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules 1:473–480

    Article  CAS  Google Scholar 

  • Chen Y, Worley SD, Kim J, Wie C-I C-I, Chen T-Y, Santiago JI, Williams JF, Sun G (2003) Biocidal poly(styrenehydantoin) beads for disinfection of water. Ind Eng Chem Res 42:280–284

    Article  CAS  Google Scholar 

  • Chen Y, Worley SD, Huang TS, Weese J, Kim J, Wei C-I, Williams JF (2004) Biocidal polystyrene beads. IV. Functionalized methylated polystyrene. J Appl Polym Sci 92:368–372

    Article  CAS  Google Scholar 

  • Denyer SP, Stewart GSAB (1998) Mechanisms of action of disinfectants. Intern Biodeterior Biodegrad 41:261–268

    Article  CAS  Google Scholar 

  • Dizman B, Elasri MO, Mathias LJ (2005) Synthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin. Biomacromolecules 6:514–520. doi:10.1021/bm049383 [PubMed: 15638560]

    Article  CAS  Google Scholar 

  • Ferreira L, Zumbuehl A (2009) Non-leaching surfaces capable of killing microorganisms on contact. J Mater Chem 19:7796–7806

    Article  CAS  Google Scholar 

  • Franklin TJ, Snow GA (1981) Antiseptics, antibiotics and the cell membrane. In: Franklin TJ, Snow GA (eds) Biochemistry of antimicrobial action, 3rd edn. Chapman & Hall, London, pp 58–78

    Google Scholar 

  • Franklin TJ, Snow GA (2005) Biochemistry and molecular biology of antimicrobial drug action, 6th edn. Springer, New York (chap. 2, chap 7)

    Google Scholar 

  • Franzin CM, Macdonald PM (2001) Polylysine-induced 2H NMR-observable domains in phosphatidylserine/phosphatidylcholine lipid bilayers. Biophys J 81:3346–3362

    Article  CAS  Google Scholar 

  • Gabriel GJ, Som A, Madkour AE, Eren T, Tew GN (2007) Infectious disease: connecting innate immunity to biocidal polymers. Mater Sci Eng R Rep 57(1–6):28–64

    Article  CAS  Google Scholar 

  • Gabriel GJ, Pool JG, Som A, Dabkowski JM, Coughlin EB, Muthukumar M, Tew GN (2008a) Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry. Langmuir 24:12489–12495

    Article  CAS  Google Scholar 

  • Gabriel GJ, Madkour AE, Dabkowski JM, Nelson CF, Nüsslein K, Tew GN (2008b) Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9:2980–2983

    Article  CAS  Google Scholar 

  • Gabriel GJ, Maegerlein JA, Nelson CF, Dabkowski JM, Eren T, Nüsslein K, Tew GN (2009) Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers. Chem Eur J 15(2):433–439

    Article  CAS  Google Scholar 

  • Gelman MA, Weisblum B, Lynn DM, Gellman SH (2004) Biocidal activity of polystyrenes that are cationic by virtue of protonation. Org Lett 6(4):557–560

    Article  CAS  Google Scholar 

  • Gilbert P, McBain AJ (2003) An evaluation of the potential impact of the increased use of biocides within consumer products upon the prevalence of antibiotic resistance. Clinical Microbiol Rev 16:189–208

    Article  CAS  Google Scholar 

  • Gilbert P, Moore LE (2005) Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715

    Article  CAS  Google Scholar 

  • Grapski JA, Cooper SL (2001) Synthesis and characterization of nonleaching biocidal polyurethanes. Biomaterials 22:2239–2246

    Article  CAS  Google Scholar 

  • Haldar J, An D, Alvarez de Cienfuegos L, Chen J, Klibanov AM (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci USA 103:17667–17671

    Article  CAS  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789

    Article  CAS  Google Scholar 

  • Hu FX, Neoh KG, Cen L, Kang ET (2005) Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnol Bioeng 89(4):474–484

    Article  CAS  Google Scholar 

  • Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K (2007) Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 8:1396–1399

    Article  CAS  Google Scholar 

  • Huang J, Koepsel RR, Murata H, Wu W, Lee SB, Kowalewski T, Russell AJ, Matyjaszewski K (2008) Nonleaching antibacterial glass surfaces via “grafting onto”: the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 24:6785–6795

    Article  CAS  Google Scholar 

  • Hugo WB (1999) Disinfection mechanisms. In: Russell AD, Hugo WB, Ayliffe GAJ (eds) Principles and practice of disinfection, preservation and sterilization, 3rd edn. Blackwell Science, Oxford, pp 258–283

    Google Scholar 

  • Ikeda T, Tazuke S, Watanabe M (1983) Interaction of biologically active molecules with phospholipid membranes. 1. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. Biochim Biophys Acta 735:380–386

    Article  CAS  Google Scholar 

  • Ikeda T, Ledwith A, Bamford CH, Hann RA (1984a) Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochem Biophys Acta 769:57–66

    Article  CAS  Google Scholar 

  • Ikeda T, Yamaguchi H, Tazuke S (1984b) New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups. Antimicrob Agents Chemother 26(2):139–144

    CAS  Google Scholar 

  • Ikeda T, Tazuke S, Suzuki Y (1984c) Biologically active polycations: synthesis and antimicrobial activity of poly(trialkylvinylbenzyl ammonium chloride)s. Makromol Chem 185:869–876

    Article  CAS  Google Scholar 

  • Ikeda T, Hirayama H, Yamaguchi H, Tazuke S, Watanabe M (1986) Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity. Antimicrob Agents Chemother 30:132–136

    CAS  Google Scholar 

  • Ikeda T, Yamaguchi H, Tazuke S (1990) Phase separation in phospholipid bilayers induced by biologically active polycations. Biochem Biophys Acta 1026(1):105–112

    Article  CAS  Google Scholar 

  • Ilker MF, Nusslein K, Tew GN, Coughlin EB (2004) Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc 126:15870–15875

    Article  CAS  Google Scholar 

  • Kenawy ER, Mahmoud YAG (2003) Biologically active polymers, 6: synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol Biosci 3(2):107–116

    Article  CAS  Google Scholar 

  • Kenawy ER, Abdel-Hay FI, El-Shanshoury A, El-Newehy MH (2002) Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly(glycidylmethacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. J Polym Sci A: Polym Chem 40:2384–2393

    Article  CAS  Google Scholar 

  • Kenawy E-R, Abdel-Hay FI, El-Magd AA, Mahmoud Y (2006) Synthesis and antimicrobial activity of some polymers derived from modified amino polyacrylamide by reacting it with benzoate esters and benzaldehyde derivatives. J Appl Polym Sci 99:2428–2437

    Article  CAS  Google Scholar 

  • Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384

    Article  CAS  Google Scholar 

  • Klibanov AM (2007) Permanently microbicidal materials coatings. J Mater Chem 17:2479–2482

    Article  CAS  Google Scholar 

  • Kocer HB, Akdag A, Ren X, Broughton RM, Worley SD, Huang TS (2008) Effect of alkyl derivatization on several properties of N-halamine antimicrobial siloxane coatings. Ind Eng Chem Res 47:7558–7563

    Article  CAS  Google Scholar 

  • Kou L, Liang J, Ren X, Kocer HB, Worley SD, Tzou YM, Huang TS (2009) Synthesis of a water-soluble siloxane copolymer and its application for antimicrobial coatings. Ind Eng Chem Res 48:6521–6526

    Article  CAS  Google Scholar 

  • Larkin DFP, Kilvington S, Dart JKG (1992) Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology 99:185–191

    CAS  Google Scholar 

  • Lauzardo M, Rubin J (2001) Mycobacterial disinfection. In: Block SS (ed) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams &Wilkins, New York, pp 513–528 (chap. 26)

    Google Scholar 

  • Lee SB, Russell AJ, Matyjaszewski K (2003) ATRP synthesis of amphiphilic random, gradient, and block copolymers of 2-(dimethylamino)ethyl methacrylate and n-butyl methacrylate in aqueous media. Biomacromolecules 4(5):1386–1393

    Article  CAS  Google Scholar 

  • Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromol 5(3):877–882

    Article  CAS  Google Scholar 

  • Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23(7):343–348

    Article  CAS  Google Scholar 

  • Liang J, Chen Y, Barnes K, Wu R, Worley SD, Huang TS (2006) N-halamine/quat siloxane copolymers for use in biocidal coatings. Biomaterials 27:2495–2501

    Article  CAS  Google Scholar 

  • Liang J, Barnes K, Akdag A, Worley SD, Lee J, Broughton RM, Huang TS (2007) Improved antimicrobial siloxane. Ind Eng Chem Res 46(7):1861–1866

    Article  CAS  Google Scholar 

  • Lienkamp K, Madkour AE, Musante A, Nelson CF, Nüsslein K, Tew GN (2008) Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J Am Chem Soc 130:9836–9843

    Article  CAS  Google Scholar 

  • Lienkamp K, Madkour AE, Kumar K-N, Nüsslein K, Tew GN (2009) Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation. Chem Eur J 15:11715–11722

    Article  CAS  Google Scholar 

  • Lin J, Qiu S, Lewis K, Klibanov AM (2002) Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog 18(5):1082–1086

    Article  CAS  Google Scholar 

  • Lin J, Qiu S, Lewis K, Klibanov AM (2003) Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83:168–172

    Article  CAS  Google Scholar 

  • Maillard J-Y (2002) Bacterial target sites for biocide action. J Appl Microbiol Symp Suppl 92:16S–27S

    Google Scholar 

  • Makal U, Wood L, Ohman DE, Wynne KJ (2006) Polyurethane biocidal polymeric surface modifiers. Biomaterials 27:1316–1326

    Article  CAS  Google Scholar 

  • Matias VRF, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240–251

    Article  CAS  Google Scholar 

  • Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ (2003) Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol 185:612–6118

    Article  CAS  Google Scholar 

  • Merianos JJ (2001) Surface-active agents. In: Block SS (ed) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams & Wilkins, New York, pp 283–320

    Google Scholar 

  • McDonnel G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Google Scholar 

  • Milovic NM, Wang J, Lewis K, Klibanov AM (2005) Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol Bioeng 90:715–722

    Article  CAS  Google Scholar 

  • Murata H, Koepsel RR, Matyjaszewski K, Russell AJ (2007) Permanent, non-leaching antibacterial surfaces 2: how high density cationic surfaces kill bacterial cells. Biomaterials 28:4870–4879

    Article  CAS  Google Scholar 

  • Nonaka T, Uemura Y, Ohse K, Jyono K, Kurihara S (1997) Preparation of resins containing phenol derivatives from chloromethylstyrene–tetraethyleneglycol dimethacrylate copolymer beads and antibacterial activity of resins. J Appl Polym Sci 66:1621–1630

    Article  CAS  Google Scholar 

  • Oku N, Yamaguchi N, Shibamoto S, Ito F, Nango M (1986) The fusogenic effect of synthetic polycations on negatively charged lipid bilayers. J Biochem 100:935–944

    CAS  Google Scholar 

  • Palermo E, Kuroda K (2009) Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 10:1416–1428

    Article  CAS  Google Scholar 

  • Palermo E, Sovadinova I, Kuroda K (2009) Structural determinants of antimicrobial activity and biocompatibility in membrane-disrupting methacrylamide random copolymers. Biomacromolecules 10:3098–3107

    Article  CAS  Google Scholar 

  • Panarin EF, Kopeikin MM (2002) Biological activity of synthetic polyelectrolyte complexes of ionogenic surfactants. Polym Sci 44:2340–2351

    CAS  Google Scholar 

  • Panarin EF, Solovskii MV, Zaikina NA, Afinogenov GE (1985) Biological activity of cationic polyelectrolytes. Macromol Chem Suppl 9:25–33

    Article  CAS  Google Scholar 

  • Park D, Wang J, Klibanov AM (2006) One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal. Biotechnol Prog 22:584–589

    Article  CAS  Google Scholar 

  • Rawlinson L-AB, Ryan SM, Mantovani G, Syrett JA, Haddleton DM, Brayden DJ (2010) Antibacterial effects of poly(2-(dimethylamino ethyl)methacrylate) against selected Gram-positive and Gram-negative bacteria. Biomacromolecules 11:443–453

    Article  CAS  Google Scholar 

  • Ren X, Kou L, Liang J, Worley SD, Tzou Y-M, Huang TS (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15:593–598

    Google Scholar 

  • Russel AD (2001) Principles of antimicrobial activity and resistance. Part II: fundamental principles of activity. In: Block SS (ed) Disinfection, sterilization and preservation, 5th edn. Lippincott Williams & Wilkins, New York, pp 31–56

    Google Scholar 

  • Russell AD (2002) Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. J Appl Microbiol Symp Suppl 92:121S–135S

    Google Scholar 

  • Russell AD (2003) Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3:794–803

    Article  CAS  Google Scholar 

  • Sambhy V, Peterson BR, Sen A (2008) Antibacterial and hemolytic activities of pyridinium polymers as a function of the spatial relationship between the positive charge and the pendant alkyl tail. Angew Chem Int Ed 47(7):1250–1254

    Article  CAS  Google Scholar 

  • Sellenet PH, Allison B, Applegate BM, Youngblood JP (2007) Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules 8:19–23

    Article  CAS  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  Google Scholar 

  • Shirai A, Sumitomo T, Yoshida M, Kaimura T, Nagamune H, Maeda T, Kourai H (2006) Synthesis and biological properties of Gemini quaternary ammonium compounds, 5, 5′-[2, 2′-(ω-polymethylenedicarbonyldioxy)diethyl]bis-(3-alkyl-4-methylthiazolium iodide) and its brominated analog. Chem Pharm Bull 54:639–645

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2001a) Novel regenerable N-halamine polymeric biocides. I. Synthesis, characterization, and antibacterial activity of hydantoin-containing polymers. J Appl Polym Sci 80:2460–2467

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2001b) Novel regenerable N-halamine polymeric biocides. III. Grafting hydantoin-containing monomers onto synthetic fabrics. J Appl Polym Sci 81:1517–1525

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2001c) Durable and refreshable polymeric N-halamine biocides containing 3-(4′-vinylbenzyl)-5, 5-dimethylhydantoin. J Polym Sci Part A Polym Chem 39:3348–3355

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2002a) Synthesis, characterization, and antibacterial activities of novel N-halamine polymer beads prepared by suspension copolymerization. Macromolecules 35:8909–8912

    Article  CAS  Google Scholar 

  • Sun Y, Sun G (2002b) Durable and regenerable antimicrobial textile materials prepared by a continuous grafting process. J Appl Polym Sci 84:1592–1599

    Article  CAS  Google Scholar 

  • Sun Y, Chen T-Y, Worley SD, Sun G (2001) Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Polym Sci Part A: Polym Chem 39:3073–3084

    Article  CAS  Google Scholar 

  • Tashiro T (2001) Antibacterial and bacterium adsorbing macromolecules. Macromol Mater Eng 286(2):63–87

    Article  CAS  Google Scholar 

  • Tew GN, Liu DH, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, Klein ML, DeGrado WF (2002) Supramolecular chemistry and self-assembly special feature: de novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci USA 99:5110–5114

    Article  CAS  Google Scholar 

  • Tew GN, Scott RW, Klein ML, DeGrado WF (2010) De novo design of antimicrobial foldamers and small molecules: from discovery to practical application. Acc Chem Res 43:30–39

    Article  CAS  Google Scholar 

  • Thome J, Hollander A, Jaeger W, Trickand I, Oehr C (2003) Ultrathin antibacterial polyammonium coatings on polymer surfaces. Surf Coat Technol 174–175:584–587

    Article  CAS  Google Scholar 

  • Tiller JC, Liao CJ, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98:5981–5985

    Article  CAS  Google Scholar 

  • Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79(4):465–471

    Article  CAS  Google Scholar 

  • Timofeeva LM, Vasilieva YA, Kleshcheva NA, Gromova GL, Topchiev DA (2002a) Radical polymerization of diallylamine compounds: from quantum chemical modeling to controllable synthesis of high-molecular weight polymers. Int J Quantum Chem 88:531–541

    Article  CAS  Google Scholar 

  • Timofeeva LM, Vasilieva YA, Kleshcheva NA, Gromova GL, Timofeeva GI, Rebrov AI, Topchiev DA (2002b) Synthesis of high-molecular weight polymers based on N, N-diallyl-N-methylamine. Macromol Chem Phys 203:2296–2304

    Article  CAS  Google Scholar 

  • Timofeeva LM, Kleshcheva NA, Vasilieva YA, Gromova GL, Timofeeva GI, Filatova MP (2005) Synthesis of novel polymers based on monomers of the diallylamine series: mechanistic and kinetic study. Polym Sci Ser A 47:273–282

    Google Scholar 

  • Timofeeva LM, Kleshcheva NA, Moroz AF, Didenko LV (2009) Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity. Biomacromolecules 10:2976–2986

    Article  CAS  Google Scholar 

  • van der Mei HC, Rustema-Abbing M, Langworthy DE, Collias DI, Mitchell MD, Bjorkquist DW, Busscher HJ (2008) Adhesion and viability of waterborne pathogens on p-DADMAC coatings. Biotechnol Bioeng 99(1):165–169

    Article  CAS  Google Scholar 

  • Vointseva II, Gembitsky PA (2009) Polyguanidines—disinfecting agents and multifunctional additives to composite materials. LKM, Moscow, p 300 (in Russian)

    Google Scholar 

  • Waschinski CJ, Tiller JC (2005) Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules 6(1):235–243

    Article  CAS  Google Scholar 

  • Waschinski CJ, Herdes V, Schueler F, Tiller JC (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5:149–156

    Article  CAS  Google Scholar 

  • Waschinski CJ, Zimmermann J, Salz U, Hutzler R, Sadowski G, Tiller JC (2008a) Design of contact-active antimicrobial acrylate-based materials using biocidal macromers. Adv Mater 20:104–108

    Article  CAS  Google Scholar 

  • Waschinski CJ, Barnert S, Theobald A, Schubert R, Kleinschmidt F, Hoffmann A, Saalwächter K, Tiller JC (2008b) Insights in the antibacterial action of poly(methyloxazoline)s with a biocidal end group and varying satellite groups. Biomacromolecules 9:1764–1771

    Article  CAS  Google Scholar 

  • Worley SD, Sun G (1996) Biocidal polymers. Trends Polym Sci 4:364–370

    CAS  Google Scholar 

  • Worley SD, Chen Y, Wang JW, Wu R, Cho U, Broughton RM, Kim J, Wei CI, Williams JF, Chen J, Li Y (2005) Novel N-halamine siloxane monomers and polymers for preparing biocidal coatings. Surf Coat Int Part B: Coat Trans 88:93–100

    Article  CAS  Google Scholar 

  • Woo GLY, Yang ML, Yin HQ, Jaffer F, Mittelman MW, Santerre JP (2002) Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res 59:35–45

    Article  CAS  Google Scholar 

  • Yaroslavov AA, Efimova AA, Lobyshev VI, Kabanov VA (2002) Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation. Biochim Biophys Acta 1560:14–24

    Article  CAS  Google Scholar 

  • Yaroslavov AA, Melik-Nubarov NS, Menger FM (2006) Polymer-induced flip-flop in biomembranes. Acc Chem Res 39:702–710

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Timofeeva.

Additional information

The authors are very grateful to Ms. Natasha Vasekina for her assistance in the preparation of figures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeeva, L., Kleshcheva, N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 89, 475–492 (2011). https://doi.org/10.1007/s00253-010-2920-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2920-9

Keywords

Navigation