Skip to main content

Advertisement

Log in

Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Considering the popularity of hydroxyapatite (HA)-based scaffolds and the varied sources of HA synthesis, their impact on the properties of the developed scaffolds needs to be properly explored. Moreover, conventional gas foaming process yields scaffolds with excellent pore morphology, but with closed pores which are inadequate for efficient osteoinduction. To address these issues, porous hydroxyapatite (HA)/polymethyl methacrylate (PMMA)/zinc oxide (ZnO)-based tri-component composite scaffolds are fabricated by a novel modified gas foaming process from both chemically synthesized HA and natural HA derived from galline and bovine bone bio-wastes. The role of the varying sources of HA on the physico-chemical, mechanical and biological properties of the developed scaffolds is investigated. For this purpose, the scaffolds developed by maintaining a constant composition of HA and PMMA at 70:30 (w/w) and ZnO at 5 wt.% are characterized. The developed scaffolds show stability in their chemical properties and interconnected macro-porous network with a maximum porosity of 81.93 ± 1.2%, average pore size of 149 ± 5 μm and maximum hydraulic permeability of (2.36 ± 0.09) × 103 µm2 for synthetic HA-based scaffolds. A maximum compressive strength, hardness and cell viability of 16.70 ± 0.6 MPa, 32.4 ± 0.9 HD and 98 ± 3.2%, respectively, and maximum protein adsorption are recorded for bovine bone-derived HA-based scaffolds. All the scaffolds are found to be bioactive in nature, while galline bone-derived HA-based scaffolds show maximum biodegradation with 8.1 ± 0.15% weight loss in SBF. The results obtained indicate that apart from the porosity and permeability, synthetic HA-based scaffolds reveal poor chemical, mechanical and biological properties compared to natural HA-based scaffolds. The study concludes that the properties of a composite scaffold rely significantly on the parent material (HA). Based on the extensive comparative investigation, bovine bone-derived HA-based composite scaffold is found to have improved properties for growth and proliferation of bone cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.K. Swain and S. Bhattacharyya, Preparation of High Strength Macroporous Hydroxyapatite Scaffold, Mater. Sci. Eng. C, 2013, 33(1), p 67–71. https://doi.org/10.1016/j.msec.2012.08.006

    Article  CAS  Google Scholar 

  2. S. Alonso-Sierra, R. Velázquez-Castillo, B. Millán-Malo, R. Nava, L. Bucio, A. Manzano-Ramírez, H. Cid-Luna and E.M. Rivera-Muñoz, Interconnected Porosity Analysis by 3D X-ray Microtomography and Mechanical Behavior of Biomimetic Organic-Inorganic Composite Materials, Mater. Sci. Eng. C, 2017, 80, p 45–53.

    Article  CAS  Google Scholar 

  3. I. Sabree, J.E. Gough and B. Derby, Mechanical Properties of Porous Ceramic Scaffolds: Influence of Internal Dimensions, Ceram. Int., 2015, 41(7), p 8425–8432.

    Article  CAS  Google Scholar 

  4. S. Li, J.R. De Wijn, J. Li, P. Layrolle and K. De Groot, Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Eng., 2003, 9(3), p 535–548.

    Article  CAS  Google Scholar 

  5. K. Zhang, Y. Fan, N. Dunne and X. Li, Effect of Microporosity on Scaffolds for Bone Tissue Engineering, Regen. Biomater., 2018, 5, p 115–124.

    Article  Google Scholar 

  6. E. Barua, A. Das, D. Pamu, A.B. Deoghare, P. Deb, S. Das and S. Chatterjee, Effect of Thermal Treatment on the Physico-Chemical Properties of Bioactive Hydroxyapatite Derived from Caprine Bone Bio-Waste, Ceram. Int., 2019, 45, p 23265–23265. https://doi.org/10.1016/j.ceramint.2019.08.023

    Article  CAS  Google Scholar 

  7. A. Das, A.K. Chikkala, G.P. Bharti, R.R. Behera, R.S. Mamilla, A. Khare and P. Dobbidi, Effect of Thickness on Optical and Microwave Dielectric Properties of Hydroxyapatite Films Deposited by RF Magnetron Sputtering, J. Alloys Compd., 2018, 739, p 729–736. https://doi.org/10.1016/j.jallcom.2017.12.293

    Article  CAS  Google Scholar 

  8. P. Deb, E. Barua, A.B. Deoghare and S. Das Lala, Development of Bone Scaffold Using Puntius Conchonius Fish Scale Derived Hydroxyapatite: Physico-Mechanical and Bioactivity Evaluations, Ceram. Int., 2019, 45, p 10004–10012.

    Article  CAS  Google Scholar 

  9. P. Deb and A.B. Deoghare, Effect of Acid, Alkali and Alkali-Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla Catla Fish Scales, Arab. J. Sci. Eng., 2019, 44, p 7479–7490.

    Article  CAS  Google Scholar 

  10. C.E. Tanase, M.I. Popa and L. Verestiuc, Biomimetic Bone Scaffolds Based on Chitosan and Calcium Phosphates, Mater. Lett., 2011, 65(11), p 1681–1683. https://doi.org/10.1016/j.matlet.2011.02.077

    Article  CAS  Google Scholar 

  11. J. Aerssens, S. Boonen, G. Lowet and J. Dequeker, Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research, Endocrinology, 1998, 139(2), p 663–670.

    Article  CAS  Google Scholar 

  12. V.S. Kattimani, S. Kondaka and K.P. Lingamaneni, Hydroxyapatite—Past, Present, and Future in Bone Regeneration, Bone Tissue Regen. Insights, 2016, 7, p BTRI.S36138.

    Article  Google Scholar 

  13. G. Radha, S. Balakumar, B. Venkatesan and E. Vellaichamy, A Novel Nano-Hydroxyapatite—PMMA Hybrid Scaffolds Adopted by Conjugated Thermal Induced Phase Separation (TIPS) and Wet-Chemical Approach: Analysis of Its Mechanical and Biological Properties, Mater. Sci. Eng. C, 2017, 73, p 164–172. https://doi.org/10.1016/j.msec.2016.12.133

    Article  CAS  Google Scholar 

  14. Y. Sa, F. Yang, J.R. De Wijn, Y. Wang, J.G.C. Wolke and J.A. Jansen, Physicochemical Properties and Mineralization Assessment of Porous Polymethylmethacrylate Cement Loaded with Hydroxyapatite in Simulated Body Fluid, Mater. Sci. Eng. C, 2016, 61, p 190–198. https://doi.org/10.1016/j.msec.2015.12.040

    Article  CAS  Google Scholar 

  15. M.S. Gezaz, S.M. Aref and M. Khatamian, Investigation of Structural Properties of Hydroxyapatite/Zinc Oxide Nanocomposites; an Alternative Candidate for Replacement in Recovery of Bones in Load-Tolerating Areas, Mater. Chem. Phys., 2019, 226, p 169–176. https://doi.org/10.1016/j.matchemphys.2019.01.005

    Article  CAS  Google Scholar 

  16. F. Geng, L. Tan, B. Zhang, C. Wu, Y. He, J. Yang and K. Yang, Study on Beta-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material, J. Mater. Sci. Technol., 2009, 25(1), p 123–129.

    CAS  Google Scholar 

  17. M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget and P. Layrolle, Rapid Prototyped Porous Titanium Coated with Calcium Phosphate as a Scaffold for Bone Tissue Engineering, Biomaterials, 2008, 29(17), p 2608–2615.

    Article  CAS  Google Scholar 

  18. E. Barua, A.B. Deoghare, S. Chatterjee and P. Sapkal, Effect of ZnO Reinforcement on the Compressive Properties, In Vitro Bioactivity, Biodegradability and Cytocompatibility of Bone Sca Ff Old Developed from Bovine Bone-Derived HAp and PMMA, Ceram. Int., 2019, 45(16), p 20331–20345. https://doi.org/10.1016/j.ceramint.2019.07.006

    Article  CAS  Google Scholar 

  19. E. Barua, A.B. Deoghare, S. Chatterjee and V.R. Mate, Characterization of Mechanical and Micro-Architectural Properties of Porous Hydroxyapatite Bone Scaffold Using Green MicroAlgae as Binder, Arab. J. Sci. Eng., 2019, 44, p 7707–7722. https://doi.org/10.1007/s13369-019-03877-9

    Article  CAS  Google Scholar 

  20. E. Barua, A.B. Deoghare, P. Deb, S. Das Lala and S. Chatterjee, Effect of Pre-Treatment and Calcination Process on Micro-Structural and Physico-Chemical Properties of Hydroxyapatite Derived from Chicken Bone Bio-Waste, Mater. Today Proc., 2019, 15, p 188–198. https://doi.org/10.1016/j.matpr.2019.04.191

    Article  CAS  Google Scholar 

  21. P. Scherrer, Bestimmung Der Grosse Und Der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Gottingen Math Klasse, Phys, 1918, 2, p 98–100.

    Google Scholar 

  22. T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.

    Article  CAS  Google Scholar 

  23. F. Ghorbani, A. Zamanian and H. Nojehdehian, Effects of Pore Orientation on In-Vitro Properties of Retinoic Acid-Loaded PLGA/Gelatin Scaffolds for Artificial Peripheral Nerve Application, Mater. Sci. Eng. C, 2017, 77, p 159–172. https://doi.org/10.1016/j.msec.2017.03.175

    Article  CAS  Google Scholar 

  24. D. Sharma and R. Jha, Analysis of Structural, Optical and Magnetic Properties of Fe/Co Co-Doped ZnO Nanocrystals, Ceram. Int., 2017, 43(11), p 8488–8496. https://doi.org/10.1016/j.ceramint.2017.03.201

    Article  CAS  Google Scholar 

  25. J.K. Han, H.Y. Song, F. Saito and B.T. Lee, Synthesis of High Purity Nano-Sized Hydroxyapatite Powder by Microwave-Hydrothermal Method, Mater. Chem. Phys., 2006, 99(2–3), p 235–239.

    Article  CAS  Google Scholar 

  26. A. Destainville, E. Champion, D. Bernache-Assollant and E. Laborde, Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate, Mater. Chem. Phys., 2003, 80(1), p 269–277.

    Article  CAS  Google Scholar 

  27. I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh and M. Zakeri, Synthesis of Nanocrystalline Hydroxyapatite by Using Precipitation Method, J. Alloys Compd., 2007, 430(1–2), p 330–333.

    Article  CAS  Google Scholar 

  28. S. Meejoo, W. Maneeprakorn and P. Winotai, Phase and Thermal Stability of Nanocrystalline Hydroxyapatite Prepared via Microwave Heating, Thermochim. Acta, 2006, 447(1), p 115–120.

    Article  CAS  Google Scholar 

  29. M.E. Fleet, X. Liu and P.L. King, Accommodation of the Carbonate Ion in Apatite: An FTIR and X-ray Structure Study of Crystals Synthesized at 2-4 GPa, Am. Mineral., 2004, 89(10), p 1422–1432.

    Article  CAS  Google Scholar 

  30. S.T. Hung, A. Bhuyan, K. Schademan, J. Steverlynck, M.D. McCluskey, G. Koeckelberghs, K. Clays and M.G. Kuzyk, Spectroscopic Studies of the Mechanism of Reversible Photodegradation of 1-Substituted Aminoanthraquinone-Doped Polymers, J. Chem. Phys., 2016 https://doi.org/10.1063/1.4943963

    Article  Google Scholar 

  31. G. Duan, C. Zhang, A. Li, X. Yang, L. Lu and X. Wang, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (Methyl Methacrylate) Template, Nanoscale Res. Lett., 2008, 3(3), p 118–122.

    Article  Google Scholar 

  32. J.A. Rincón-López, J.A. Hermann-muñoz, A.L. Giraldo-betancur, A. De Vizcaya-ruiz, J.M. Alvarado-orozco and J. Muñoz-saldaña, Synthesis Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials, 2018, 11(3), p 333.

    Article  Google Scholar 

  33. A. Ruksudjarit, K. Pengpat, G. Rujijanagul and T. Tunkasiri, Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone, Curr. Appl. Phys., 2008, 8(3–4), p 270–272.

    Article  Google Scholar 

  34. E.A. Ofudje, A.I. Adeogun, M.A. Idowu and S.O. Kareem, Synthesis and Characterization of Zn-Doped Hydroxyapatite: Scaffold Application Antibacterial and Bioactivity Studies, Heliyon, 2019, 5(5), p e01716. https://doi.org/10.1016/j.heliyon.2019.e01716

    Article  Google Scholar 

  35. K. Alvarez and H. Nakajima, Metallic Scaffolds for Bone Regeneration, Materials (Basel), 2009, 2(3), p 790–832.

    Article  CAS  Google Scholar 

  36. E.D. Pellegrino and R.M. Biltz, Bone Carbonate and the Ca to P Molar Ratio, Nature, 1968, 219, p 1261–1262.

    Article  CAS  Google Scholar 

  37. U.E. Pazzaglia, T. Congiu, F. Ranchetti, M. Salari and C.D. Orbo, Scanning Electron Microscopy Study of Bone Intracortical Vessels using an Injection and Fractured Surfaces Technique, Anat. Sci. Int., 2010, 85, p 31–37.

    Article  Google Scholar 

  38. A. Paz, D. Guadarrama, M. Lopez, J.E. Gonzalez, N. Brizuela and J. Aragon, A Comparative Study of Hydroxyapatite Nanoparticles Synthesized by Different Routes, Quim. Nova, 2012, 35(9), p 1724–1727.

    Article  CAS  Google Scholar 

  39. W. Brigitte and J.D. Pasteris, A Mineralogical Perspective on the Apatite in Bone, Mater. Sci. Eng. C, 2005, 25, p 131–143.

    Article  Google Scholar 

  40. M. Motskin, D.M. Wright, K. Muller, N. Kyle, T.G. Gard, A.E. Porter and J.N. Skepper, Hydroxyapatite Nano and Microparticles: Correlation of Particle Properties with Cytotoxicity and Biostability, Biomaterials, 2009, 30(19), p 3307–3317. https://doi.org/10.1016/j.biomaterials.2009.02.044

    Article  CAS  Google Scholar 

  41. H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, An In Vitro Evaluation of the Ca/P Ratio for the Cytocompatibility of Nano-to-Micron Particulate Calcium Phosphates for Bone Regeneration, Acta Biomater., 2008, 4(5), p 1472–1479.

    Article  CAS  Google Scholar 

  42. N. Kourkoumelis, I. Balatsoukas and M. Tzaphlidou, Ca/P Concentration Ratio at Different Sites of Normal and Osteoporotic Rabbit Bones Evaluated by Auger and Energy Dispersive X-ray Spectroscopy, J. Biol. Phys., 2012, 38(2), p 279–291.

    Article  CAS  Google Scholar 

  43. J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, B. Descamps and B. Thierry, Role of Interconnections in Porous Bioceramics on Bone Recolonization In Vitro and In Vivo, J. Mater. Sci. Mater. Med., 1999, 1999(10), p 111–120.

    Article  Google Scholar 

  44. K. Rahmani-Monfard, A. Fathi and S.M. Rabiee, Three-Dimensional Laser Drilling of Polymethyl Methacrylate (PMMA) Scaffold Used for Bone Regeneration, Int. J. Adv. Manuf. Technol., 2016, 84(9–12), p 2649–2657. https://doi.org/10.1007/s00170-015-7917-1

    Article  Google Scholar 

  45. E. Skwarek, W. Janusz and D. Sternik, The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite, Adsorpt. Sci. Technol., 2017, 35(5–6), p 507–518.

    Article  CAS  Google Scholar 

  46. B.P. Mahammod, E. Barua, P. Deb, A.B. Deoghare and K.M. Pandey, Investigation of Physico-Mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold, Arab. J. Sci. Eng., 2020, 45, p 5505–5515. https://doi.org/10.1007/s13369-020-04467-w

    Article  CAS  Google Scholar 

  47. H. Haugen, J. Will, A. Ko, U. Hopfner, J. Aigner and E. Wintermantel, Ceramic TiO 2 -Foams: Characterisation of a Potential Scaffold, J. Eur. Ceram. Soc., 2004, 24, p 661–668.

    Article  CAS  Google Scholar 

  48. J. Franco, P. Hunger, M.E. Launey, A.P. Tomsia and E. Saiz, Direct Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel, Acta Biomater., 2010, 6(1), p 218–228. https://doi.org/10.1016/j.actbio.2009.06.031

    Article  CAS  Google Scholar 

  49. T.R. Kyriakides, Molecular Events at Tissue-Biomaterial Interface, Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection, Elsevier, 2015.

    Google Scholar 

  50. S.I. Roohani-Esfahani, S. Nouri-Khorasani, Z. Lu, R. Appleyard and H. Zreiqat, The Influence Hydroxyapatite Nanoparticle Shape and Size on the Properties of Biphasic Calcium Phosphate Scaffolds Coated with Hydroxyapatite-PCL Composites, Biomaterials, 2010, 31(21), p 5498–5509. https://doi.org/10.1016/j.biomaterials.2010.03.058

    Article  CAS  Google Scholar 

  51. G. Hannink and J.J.C. Arts, Bioresorbability, Porosity and Mechanical Strength of Bone Substitutes: What is Optimal for Bone Regeneration?, Injury, 2011, 42(suppl. 2), p S22–S25. https://doi.org/10.1016/j.injury.2011.06.008

    Article  Google Scholar 

  52. R. Saidi, M.H. Fathi and H. Salimijazi, Fabrication and Characterization of Hydroxyapatite-Coated Forsterite Scaffold for Tissue Regeneration Applications, Bull. Mater. Sci., 2015, 38(5), p 1367–1374.

    Article  CAS  Google Scholar 

  53. H. Ghomi, H. Edris and M.H. Fathi, Preparation of Nanostructure Hydroxyapatite Scaffold for Tissue Engineering Applications, J. Sol-Gel Sci. Technol., 2011, 58, p 642–650.

    Article  CAS  Google Scholar 

  54. Z.H. Pan, H.P. Cai, P.P. Jiang and Q.Y. Fan, Properties of a Calcium Phosphate Cement Synergistically Reinforced by Chitosan Fiber and Gelatin, J. Polym. Res., 2006, 13, p 323–327.

    Article  CAS  Google Scholar 

  55. C. Gao, X. Hu and Y. Hong, Photografting of Poly ( Hydroxylethyl Acrylate) onto Porous Polyurethane Scaffolds to Improve Their Endothelial Cell Compatibility, J. Biomater. Sci. Polym. Ed., 2012, 14, p 937–950.

    Article  Google Scholar 

  56. W.H. Lee, A.V. Zavgorodniy, C.Y. Loo and R. Rohanizadeh, Synthesis and Characterization of Hydroxyapatite with Different Crystallinity: Effects on Protein Adsorption and Release, J. Biomed. Mater. Res. Part A, 2012, 100A(6), p 1539–1549.

    Article  CAS  Google Scholar 

  57. C.J. Wilson, R.E. Clegg, D. Ph, D.I. Leavesley, D. Ph, M.J. Pearcy and D. Ph, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins: A Review, Tissue Eng., 2005, 11(1), p 1–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indovation Lab, Central Instrumentation Facility (CIF) and TEQIP-III of NIT Silchar for providing technical and financial support for material characterization. The authors acknowledge the Strength of Materials Lab of Mechanical Engineering Department and CIF, IIT Guwahati, for the support with material characterization. The authors thank the SAIF, IIT Madras, Chennai, and SAIF IIT Bombay, Powai, for performing SEM and FTIR analysis, respectively. The authors thank Central Glass and Ceramic Research Institute (CGRI), Kolkata, for MIP and contact angle test. The authors also acknowledge MHRD, Government of India, for providing financial support to carry out the research work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emon Barua.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6298 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barua, E., Das, A., Deoghare, A.B. et al. Performance of ZnO-Incorporated Hydroxyapatite/Polymethyl Methacrylate Tri-Component Composite Bone Scaffolds Fabricated from Varying Sources of Hydroxyapatite. J. of Materi Eng and Perform 32, 9649–9664 (2023). https://doi.org/10.1007/s11665-022-07789-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07789-y

Keywords

Navigation