Skip to main content
Log in

Exploring the antimicrobial and anticancer activities of zinc doped nanohydroxyapatite prepared via ultrasonic-assisted method for bone tissue engineering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The main purpose is to investigate the antimicrobial, biocompatibility properties, and anticancer activities of the nanohydroxyapatite (nHA) and Zn-doped nanohydroxyapatite prepared at different calcination temperatures. We utilized the wet precipitation method with the aid of ultrasonic waves. The impact of both the calcination temperature and Ca/Zn substitution assessed with spectroscopic techniques. The TEM images showed that nHA particles described by particles with a rod-like form transformed to a spherical shape with the Ca/Zn substitution. The antimicrobial features of the nHA samples suggested that higher concentrations of nHA exhibit stronger antimicrobial effects against the tested pathogens. Regarding in vitro cytotoxicity, assessments involving both human osteosarcoma (HOS) cells and human normal immortalized skin fibroblasts (BJ-1) cells indicate that the 20% Ca/Zn nHA sample exhibited the highest cell viability for BJ-1 cells, reaching 100%. Conversely, the nHA sample with a 10% Ca/Zn ratio induced the most pronounced cytotoxic effect in HOS cells.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

All data are available when requesting by the reviewers.

References

  1. H. Maleki-Ghaleh, M. Hossein Siadati, A. Fallah, A. Zarrabi, F. Afghah, B. Koc, E. Dalir Abdolahinia, Y. Omidi, J. Barar, A. Akbari-Fakhrabadi, Y. Beygi-Khosrowshahi, K. Adibkia, Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Chem. Eng. J. 426, 131321 (2021)

    Article  CAS  Google Scholar 

  2. F. Hussain Alhamoudi, The role of fabrication methods and the impact of hydroxyapatite content on PU/HA scaffolds for tissue regeneration. J. Mater. Res. (2024). https://doi.org/10.1557/s43578-024-01288-7

    Article  Google Scholar 

  3. R. Ghosh, S. Das, S.P. Mallick, Z. Beyene, A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications. Mater. Today Commun. 31, 103311 (2022)

    Article  CAS  Google Scholar 

  4. M.S. El Khooly, A.S. Abdraboh, A.M. Bakr, K.T. Ereiba, Fabrication and characterization of silver-substituted bioactiveglass incorporated with sodium alginate and graphene oxide. Mater. Chem. Phys. 301, 127716 (2023)

    Article  Google Scholar 

  5. A. Mahanty, D. Shikha, Microstructural, mechanical and biocompatibility investigation of metal-polymer-doped hydroxyapatite. J. Mater. Res. (2024). https://doi.org/10.1557/s43578-024-01297-6

    Article  Google Scholar 

  6. A.A. Al-esnawy, K.T. Ereiba, A.M. Bakr, A.S. Abdraboh, Characterization and antibacterial activity of streptomycin sulfate loaded bioglass/chitosan beads for bone tissue engineering. J. Mol. Struct. 1227, 129715 (2021)

    Article  CAS  Google Scholar 

  7. M. Farrokhi-Rad, Effect of morphology on the electrophoretic deposition of hydroxyapatite nanoparticles. J. Alloys Compd. 741, 211 (2018)

    Article  CAS  Google Scholar 

  8. M. Gu, W. Li, L. Jiang, X. Li, Recent progress of rare earth doped hydroxyapatite nanoparticles: luminescence properties, synthesis and biomedical applications. Acta Biomater. 148, 22 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. H. Kaur, R. Garg, S. Singh, A. Jana, C. Bathula, H.-S. Kim, S.G. Kumbar, M. Mittal, Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2022.120703

    Article  PubMed  PubMed Central  Google Scholar 

  10. K. Kadu, G. Ghosh, L. Panicker, M. Kowshik, S. Roy Ramanan, Role of surface charges on interaction of rod-shaped magnetic hydroxyapatite nanoparticles with protein. Colloid. Surf. B Biointerfaces 177, 362 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. M.S. El-khooly, A.S. Abdraboh, A.M. Bakr, K.H.T. Ereiba, Bioactivity and mechanical properties characterization of bioactive glass incorporated with graphene oxide. SILICON 15(3), 1263 (2023)

    Article  CAS  Google Scholar 

  12. H. Kim, S. Mondal, B. Jang, P. Manivasagan, M.S. Moorthy, J. Oh, Biomimetic synthesis of metal–hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): structural analysis, spectroscopic characterization and biomedical application. Ceram. Int. 44(16), 20490 (2018)

    Article  CAS  Google Scholar 

  13. Y. Wu, S. Chen, P. Luo, S. Deng, Z. Shan, J. Fang, X. Liu, J. Xie, R. Liu, S. Wu, X. Wu, Z. Chen, K.W.K. Yeung, Q. Liu, Z. Chen, Optimizing the bio-degradability and biocompatibility of a biogenic collagen membrane through cross-linking and zinc-doped hydroxyapatite. Acta Biomater. 143, 159 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. C.-D. Deng, Z.-Q. Gong, S.-L. Wang, W. Song, Y.-L. Zhang, T.-T. Yan, A novel calcium phosphate cement used for enhanced pedicle screw fixation: a biomechanical study with finite element. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00722-y

    Article  PubMed  Google Scholar 

  15. D.M. Vranceanu, E. Ungureanu, I.C. Ionescu, A.C. Parau, A.E. Kiss, A. Vladescu, C.M. Cotrut, Electrochemical surface biofunctionalization of titanium through growth of TiO2 nanotubes and deposition of Zn doped hydroxyapatite. Coatings 12(1), 69 (2022)

    Article  CAS  Google Scholar 

  16. R. Sergi, D. Bellucci, R.T. Candidato, L. Lusvarghi, G. Bolelli, L. Pawlowski, G. Candiani, L. Altomare, L. De Nardo, V. Cannillo, Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Surf. Coat. Technol. 352, 84 (2018)

    Article  CAS  Google Scholar 

  17. K.P. Tank, K.S. Chudasama, V.S. Thaker, M.J. Joshi, Pure and zinc doped nano-hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J. Cryst. Growth 401, 474 (2014)

    Article  CAS  Google Scholar 

  18. A. Kaur, M. Kaur, P. Vyas, V. Singh, Structural and optical studies on Ti 4+ and Mg 2+-substituted strontium ferrite nanoparticles for enhancing visible-light-driven photocatalytic and antimicrobial activity The effect of Ti 4+ and Mg 2+ substitution on the structural, optical, photocatalytic, and antimicrobial activity of strontium ferrite NPs was comprehensively studied. The ratio of Ti 4+ and Mg 2+ ions was varied in Sr 0.4 Ti 0.6-x Mg x Fe 2 O 4+δ (x = 0). J. Mater. Res. 39, 590–608 (2024)

    Article  CAS  Google Scholar 

  19. C. Bathula, R. Mk, A. Kumar, H. Yadav, S. Ramesh, S. Shinde, N.K. Shrestha, M. Km, V. Reddy, A. Mohammed, Microwave assisted synthesis of imidazolyl fluorescent dyes as antimicrobial agents. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.01.011

    Article  Google Scholar 

  20. S. Khadtare, A.S. Bansode, V.L. Mathe, N.K. Shrestha, C. Bathula, S.-H. Han, H.M. Pathan, Effect of oxygen plasma treatment on performance of ZnO based dye sensitized solar cells. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.07.013

    Article  Google Scholar 

  21. A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A.-V. Tran, S.-W. Lee, Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2017.12.003

    Article  Google Scholar 

  22. I. Uysal, B. Yilmaz, Z. Evis, Zn-doped hydroxyapatite in biomedical applications. J. Aust. Ceram. Soc. 57(3), 869 (2021)

    Article  CAS  Google Scholar 

  23. A.M.E. Nahrawy, A.M. Bakr, A.B.A. Hammad, A.M. Mansour, Nano-architecture of CaO/Ag-chitosan nanocomposite by sol gel process: formation and characterization. Egypt. J. Chem. 64(12), 7393 (2021)

    Google Scholar 

  24. Y. Wang, F. Gao, L. Zhao, Y. Wu, C. Li, H. Li, Y. Jiang, Enhancing cancer treatment via “Zn2+ interference” with Zn-based nanomaterials. Coord. Chem. Rev. 500, 215535 (2024)

    Article  CAS  Google Scholar 

  25. Y. Su, I. Cockerill, Y. Wang, Y.-X. Qin, L. Chang, Y. Zheng, D. Zhu, Y. Zheng, D. Zhu, Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. (2019). https://doi.org/10.1016/j.tibtech.2018.10.009

    Article  PubMed  Google Scholar 

  26. S. Wu, K. Zhang, Y. Liang, Y. Wei, J. An, Y. Wang, J. Yang, H. Zhang, Z. Zhang, J. Liu, J. Shi, S. Wu, K. Zhang, Y. Liang, Y. Wei, J. An, Y. Wang, J. Yang, H. Zhang, Z. Zhang, J. Liu, J. Shi, Adv. Sci. (2021). https://doi.org/10.1002/advs.202103534

    Article  Google Scholar 

  27. C. Abildgaard, P. Guldberg molecular drivers of cellular metabolic reprogramming in melanoma. (n.d.).

  28. J. Wang, C. Qu, X. Shao, G. Song, J. Sun, D. Shi, R. Jia, H. An, H. Wang, Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS. Bioact. Mater. 20, 404 (2023)

    PubMed  Google Scholar 

  29. J. Yan, C. Liu, Q. Wu, J. Zhou, X. Xu, L. Zhang, D. Wang, F. Yang, H. Zhang, Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Anal. Chem. 92(16), 11453 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Q. Yu, Q. Li, L. Tu, Y. Zhou, H. Zhu, Q. Zhang, M. Liu, Y. Sun, Calcium sulfide based nanoreservoirs elicit dual pyroptosis pathways for enhanced anti-tumor immunity. Chem. Eng. J. 477, 147085 (2023)

    Article  CAS  Google Scholar 

  31. G.E. Poinern, R.K. Brundavanam, N. Mondinos, Z.T. Jiang, Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 16(4), 469 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. D. Gopi, J. Indira, L. Kavitha, M. Sekar, U.K. Mudali, Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 131 (2012)

    Article  CAS  Google Scholar 

  33. D. Venkatasubbu, G. Avadhani, R. Thangavel, J. Kumar: 72 Publications 2561 Citations See Profile (n.d.).

  34. G.D. Venkatasubbu, S. Ramasamy, G.S. Avadhani, L. Palanikumar, J. Kumar, Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. J. Nanoparticle Res. (2012). https://doi.org/10.1007/s11051-012-0819-3

    Article  Google Scholar 

  35. W. El Hotaby, A.M. Bakr, H.S. Ibrahim, N.S. Ammar, H.A. Hani, A.A. Mostafa, Eco-friendly zeolite/alginate microspheres for Ni ions removal from aqueous solution: kinetic and isotherm study. J. Mol. Struct. 1241, 130605 (2021)

    Article  Google Scholar 

  36. I. Uysal, F. Severcan, A. Tezcaner, Z. Evis, Co-doping of hydroxyapatite with zinc and fluoride improves mechanical and biological properties of hydroxyapatite. Progress Nat. Sci. Mater. Int. 24(4), 340 (2014)

    Article  CAS  Google Scholar 

  37. Y. Bi, M. Huang Characterization and Analysis of nano-hydroxy apatite material. 582 (2015)

  38. A. Turlybekuly, A.D. Pogrebnjak, L.F. Sukhodub, L.B. Sukhodub, A.S. Kistaubayeva, I.S. Savitskaya, D.H. Shokatayeva, O.V. Bondar, Z.K. Shaimardanov, S.V. Plotnikov, B.H. Shaimardanova, I. Digel, Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. Mater. Sci. Eng. C 104, 109965 (2019)

    Article  CAS  Google Scholar 

  39. C.Y. Beh, E.M. Cheng, N.F. Mohd Nasir, S.F. Khor, S.K. Eng, M.S. Abdul Majid, M.J.M. Ridzuan, K.Y. Lee, Low frequency dielectric and optical behavior on physicochemical properties of hydroxyapatite/cornstarch composite. J. Colloid Interface Sci. 600, 187 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. M.M.H. El-Sayed, A.A. Mostafa, A.M. Gaafar, W. El Hotaby, E.M.A. Hamzawy, M.S. El-Okaily, A.M. Gamal-Eldeen, In vitro kinetic investigations on the bioactivity and cytocompatibility of bioactive glasses prepared via melting and sol–gel techniques for bone regeneration applications. Biomed. Mater. 12(1), 015029 (2017)

    Article  PubMed  Google Scholar 

  41. K.R. Mohamed, H.H. Beherei, G.T. El Bassyouni, N. El Mahallawy, Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials. Mater. Sci. Eng. C 33(7), 4126 (2013)

    Article  CAS  Google Scholar 

  42. H. Gheisari, E. Karamian, Preparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering. Nanomed. J. 2(2), 141 (2015)

    Google Scholar 

  43. S. Sibte, A. Abidi, Q. Murtaza, Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J. Mater. Sci. Technol. (2013). https://doi.org/10.1016/j.jmst.2013.10.011

    Article  Google Scholar 

  44. G. Mahmutoglu, A. Topsakal, E. Altan, N. Kuskonmaz, S. Daglilar, F.N. Oktar, G. Erdemir, S.E. Kuruca, S. Akyol, O. Gunduz, B. Ben-Nissan, Effects of temperature and pH on the synthesis of nanohydroxyapatite powders by chemical precipitation. J. Aust. Ceram. Soc. 59(5), 1433 (2023)

    Article  CAS  Google Scholar 

  45. C. Oliveira De Lima, A.L. Menezes De Oliveira, L. Chantelle, E.C.S. Filho, M. Jaber, M.G. Fonseca, 111471-Tour 23, 3` emé etage, couloir 23–33. Colloids Surf. B Biointerfaces 198, 75005 (2021)

    Google Scholar 

  46. S. Mardin, E.M.A. Hamzawy, A. Abd El Aty, G.T. El-Bassyouni, Zn-containing wollastonite with well-defined microstructural and good antifungal activity. SILICON 15(11), 4653 (2023)

    Article  CAS  Google Scholar 

  47. W. Akram, R. Zahid, R.M. Usama, S.A. AlQahtani, M. Dahshan, M.A. Basit, M. Yasir, Enhancement of antibacterial properties, surface morphology and in vitro bioactivity of hydroxyapatite-zinc oxide nanocomposite coating by electrophoretic deposition technique. Bioengineering 10(6), 693 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N. Ohtsu, Y. Kakuchi, T. Ohtsuki, Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.09.101

    Article  Google Scholar 

  49. A.M. Bakr, B. Anis, W. Hotaby, Sounchemical synthesis of graphene/nano hydroxyapatite composites for potential biomedical application. Egypt. J. Chem. 65(2), 669 (2022)

    Google Scholar 

  50. G.W. Ali, W. El-Hotaby, B. Hemdan, W.I. Abdel-Fattah, Thermosensitive chitosan/phosphate hydrogel-composites fortified with Ag versus Ag@Pd for biomedical applications. Life Sci. 194, 185 (2018)

    Article  CAS  PubMed  Google Scholar 

  51. W.A. Khalil, H.H.A. Sherif, B.A. Hemdan, S.K.H. Khalil, W. El Hotaby, Biocompatibility enhancement of graphene oxide-silver nanocomposite by functionalisation with polyvinylpyrrolidone. IET Nanobiotechnol. 13(8), 816 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  52. S.T. Gaballah, H.A. El-Nazer, R.A. Abdel-Monem, M.A. El-Liethy, B.A. Hemdan, S.T. Rabie, Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int. J. Biol. Macromol. 121, 707 (2019)

    Article  CAS  PubMed  Google Scholar 

  53. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55 (1983)

    Article  CAS  PubMed  Google Scholar 

  54. H.H.A. Sherif, W. El Hotaby, S.K.H. Khalil, B.A. Hemdan, W.A. Khalil, Preparation, characterization, and biological assessment of functionalized reduced graphene oxide–silver nanocomposite. J. Mater. Res. 38(7), 1843 (2023)

    Article  CAS  Google Scholar 

  55. C. Bézivin, S. Tomasi, F. Lohezic-Le Devehat, J. Boustie, Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 10(6–7), 499 (2003)

    Article  PubMed  Google Scholar 

Download references

Funding

Funding support was given by the National Research Centre, in-home project unit, project no. 13020238.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conception and design of the study. Material preparation, data collection, and analysis were performed by WME, and materials preparation and characterizations were performed by AMB and HHS. The first draft of the manuscript was written by HHS and all authors commented and contributed to subsequent versions of the manuscript. All the antimicrobial tests were performed and analyzed by BH, while all cytotoxicity assessments were performed by AS. The final draft was edited and revised by WME.

Corresponding author

Correspondence to W. El Hotaby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research carried out within this work did not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Hotaby, W., Bakr, A.M., Sherif, H.H.A. et al. Exploring the antimicrobial and anticancer activities of zinc doped nanohydroxyapatite prepared via ultrasonic-assisted method for bone tissue engineering. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01350-4

Keywords

Navigation