Skip to main content

Advertisement

Log in

Synthesis methods of hydroxyapatite and biomedical applications: an updated review

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) is observed as a mineral deposition on bones and in teeth enamel and hence serves as an ideal model or as a component for orthopaedic and dental implants. Synthetic HAp has been synthesized on a lab scale for several decades to mimic the naturally occurring HAp based on its chemical and crystallographic nature. There are several methods for synthesis of HAp available in the literature, amongst which the following are a few examples: dry methods which include the solid-state method and mechano-chemical method, wet methods which include chemical precipitation and sol–gel method, and methods which use high-temperature such as combustion method and pyrolysis method. However, more economical and better yield-giving methods produce HAp with controlled morphology for its potential use in biomedical applications. One such method that exploits Schiff base ligands to form chelating complexes with calcium and phosphate precursors and protect generated HAp nuclei is recent ongoing research for the preparation of HAp. This review presents the synthesis of HAp using a wide array of methods, with the recent HAp using novel methods compared to the traditional synthesis of HAp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zakaria, S.M., Sharif Zein, S.H., Othman, M.R., Yang, F., Jansen, J.A.: Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review. Tissue Eng Part B Rev 19, 431–41 (2013)

    Article  CAS  PubMed  Google Scholar 

  2. Dubok, V.A.: Bioceramics - yesterday, today, tomorrow. Powder Metall. Met. Ceram. 39, 381–394 (2000). https://doi.org/10.1023/A:1026617607548

    Article  CAS  Google Scholar 

  3. Dorozhkin, S.V.: Calcium orthophosphates in nature, biology and medicine. Materials. 2, 399–498 (2009). https://doi.org/10.3390/ma2020399

    Article  CAS  PubMed Central  Google Scholar 

  4. Hench, L.L., Thompson, I.: Twenty-first century challenges for biomaterials. J. R. Soc. Interface. 7(Suppl 4), S379–S391 (2010). https://doi.org/10.1098/rsif.2010.0151.focus

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kattimani, V.S., Kondaka, S., Lingamaneni, K.P.: Hydroxyapatite–-past, present, and future in bone regeneration. Bone Tissue Regen Insights. 7, 36138 (2016). https://doi.org/10.4137/btri.s36138

    Article  Google Scholar 

  6. Fada, R., Shahgholi, M., Karimian, M.: Improving the mechanical properties of strontium nitrate doped dicalcium phosphate cement nanoparticles for bone repair application. Ceram Int. 47, 14151–14159 (2021). https://doi.org/10.1016/j.ceramint.2021.02.002

    Article  CAS  Google Scholar 

  7. Li, X., Yuan, Y., Liu, L., Leung, Y.S., Chen, Y., Guo, Y., Chai, Y., Chen, Y.: 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Biodes Manuf. 3, 15–29 (2020). https://doi.org/10.1007/s42242-019-00056-5

    Article  CAS  Google Scholar 

  8. Ke, D., Bose, S.: Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing. Addit Manuf. 22, 111–117 (2018). https://doi.org/10.1016/j.addma.2018.04.020

    Article  CAS  Google Scholar 

  9. Lee, S., Choi, D., Shim, J.H., Nam, W.: Efficacy of three-dimensionally printed polycaprolactone/beta tricalcium phosphate scaffold on mandibular reconstruction. Sci. Rep. 10(1), 4979 (2020). https://doi.org/10.1038/s41598-020-61944-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fitzpatrick, V., Martín-Moldes, Z., Deck, A., Torres-Sanchez, R., Valat, A., Cairns, D., Li, C., Kaplan, D.L.: Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials. 276, 12095 (2021). https://doi.org/10.1016/j.biomaterials.2021.120995

    Article  CAS  Google Scholar 

  11. Saleem, M., Rasheed, S., Yougen, C.: Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Sci Technol Adv Mater. 21, 242–266 (2020). https://doi.org/10.1080/14686996.2020.1748520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, C., Xue, J., Yu, X., Zhai, D., Lin, R., Zhang, M., Xia, L., Wang, X., Yao, Q., Chang, J., Wu, C.: Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Acta Biomater. 119, 419–431 (2021). https://doi.org/10.1016/j.actbio.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  13. Ozaki, H., Hamai, R., Shiwaku, Y., Sakai, S., Tsuchiya, K., Suzuki, O.: Mutual chemical effect of autograft and octacalcium phosphate implantation on enhancing intramembranous bone regeneration. Sci Technol Adv Mater. 22, 345–362 (2021). https://doi.org/10.1080/14686996.2021.1916378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kurobane, T., Shiwaku, Y., Anada, T., Hamai, R., Tsuchiya, K., Baba, K., Iikubo, M., Takahashi, T., Suzuki, O.: Angiogenesis involvement by octacalcium phosphate-gelatin composite-driven bone regeneration in rat calvaria critical-sized defect. Acta Biomater. 88, 514–526 (2019). https://doi.org/10.1016/j.actbio.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  15. Saito, S., Hamai, R., Shiwaku, Y., Hasegawa, T., Sakai, S., Tsuchiya, K., Sai, Y., Iwama, R., Amizuka, N., Takahashi, T., Suzuki, O.: Involvement of distant octacalcium phosphate scaffolds in enhancing early differentiation of osteocytes during bone regeneration. Acta Biomater. 129, 309–322 (2021). https://doi.org/10.1016/j.actbio.2021.05.017

    Article  CAS  PubMed  Google Scholar 

  16. Nie, L., Deng, Y., Li, P., Hou, R., Shavandi, A., Yang, S.: Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega 5, 10948–10957 (2020). https://doi.org/10.1021/acsomega.0c00727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, X., Song, T., Chen, X., Wang, M., Yang, X., Xiao, Y., Zhang, X.: Osteoinductivity of porous biphasic calcium phosphate ceramic spheres with nanocrystalline and their efficacy in guiding bone regeneration. ACS Appl Mater Interfaces. 11, 3722–3736 (2019). https://doi.org/10.1021/acsami.8b18525

    Article  CAS  PubMed  Google Scholar 

  18. Medvecky, L., Giretova, M., Stulajterova, R., Luptakova, L., Sopcak, T.: Tetracalcium phosphate/monetite/calcium sulfate hemihdrate biocement powder mixtures prepared by the one-step synthesis for preparation of nanocrystalline hydroxyapatite biocement-properties and in vitro evaluation. Materials. 14(9), 2137 (2021). https://doi.org/10.3390/ma14092137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin, T., Li, X., Long, H., Bin, S., Xu, Y.: Bioactive tetracalcium phosphate scaffolds fabricated by selective laser sintering for bone regeneration applications. Materials. 13(10), 2268 (2020). https://doi.org/10.3390/ma13102268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collins, M.N., Ren, G., Young, K., Pina, S., Reis, R.L., Oliveira, J.M.: Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv. Funct. Mater. 31(21), 2010609 (2021). https://doi.org/10.1002/adfm.202010609

    Article  CAS  Google Scholar 

  21. Li, J.J., Ebied, M., Xu, J., Zreiqat, H.: Current approaches to bone tissue engineering: the interface between biology and engineering. Adv. Healthc. Mater. 7(6), e1701061 (2018). https://doi.org/10.1002/adhm.201701061

    Article  CAS  PubMed  Google Scholar 

  22. Cacciotti, I.: Multisubstituted hydroxyapatite powders and coatings: the influence of the codoping on the hydroxyapatite performances. Int J Appl Ceram Technol. 16, 1864–1884 (2019). https://doi.org/10.1111/ijac.13229

    Article  CAS  Google Scholar 

  23. Mondal, S., Pal, U.: 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug. Deliv. Sci. Technol. 53(24), 101131 (2019). https://doi.org/10.1016/j.jddst.2019.101131

    Article  CAS  Google Scholar 

  24. Yu, L., Rowe, D.W., Perera, I.P., Zhang, J., Suib, S.L., Xin, X., Wei, M.: Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 12, 18235–18249 (2020). https://doi.org/10.1021/acsami.0c00275

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, H., Chabok, R., Guan, X., Chawla, A., Li, Y.: Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 69, 342–351 (2018). https://doi.org/10.1016/j.actbio.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalia, P., Vizcay-Barrena, G., Fan, J.P., Warley, A., Di Silvio, L., Huang, J.: Nanohydroxyapatite shape and its potential role in bone formation: an analytical study. J R Soc Interface. 11, 20140004–20140004 (2014). https://doi.org/10.1098/rsif.2014.0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Honório, T., Lemaire, T., Di Tommaso, D., Naili, S.: Molecular modelling of the heat capacity and anisotropic thermal expansion of nanoporous hydroxyapatite. Materialia. 5, 100251 (2019). https://doi.org/10.1016/j.mtla.2019.100251

    Article  CAS  Google Scholar 

  28. K. Hayashi, R. Kishida, A. Tsuchiya, K. Ishikawa, Honeycomb blocks composed of carbonate apatite, β-tricalcium phosphate, and hydroxyapatite for bone regeneration: effects of composition on biological responses. Mater. Today Bio. 4 (2019). https://doi.org/10.1016/j.mtbio.2019.100031.

  29. Esmaeili, S., Akbari Aghdam, H., Motififard, M., Saber-Samandari, S., Montazeran, A.H., Bigonah, M., Sheikhbahaei, E., Khandan, A.: A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. Eur J Orthop Surg Traumatol. 30, 123–131 (2020). https://doi.org/10.1007/s00590-019-02530-3

    Article  PubMed  Google Scholar 

  30. Hikmawati, D., Maulida, H.N., Putra, A.P., Budiatin, A.S., Syahrom, A.: Synthesis and characterization of nanohydroxyapatite-gelatin composite with streptomycin as antituberculosis injectable bone substitute. Int. J. Biomater. 2019, 7179243 (2019). https://doi.org/10.1155/2019/7179243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prakash, J., Prema, D., Venkataprasanna, K.S., Balagangadharan, K., Selvamurugan, N., Venkatasubbu, G.D.: Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering. Int J Biol Macromol. 154, 62–71 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.095

    Article  CAS  PubMed  Google Scholar 

  32. Hwangbo, H., Lee, H., Roh, E.J., Kim, W., Joshi, H.P., Kwon, S.Y., Choi, U.Y., Han, I.B., Kim, G.H.: Bone tissue engineering via application of a collagen/hydroxyapatite 4D-printed biomimetic scaffold for spinal fusion. Appl. Phys. Rev. 8(2), 021403 (2021). https://doi.org/10.1063/5.0035601

    Article  CAS  Google Scholar 

  33. Watcharajittanont N., Tabrizian M., Putson C., Pripatnanont P., Meesane J., Osseointegrated membranes based on electro-spun TiO2/hydroxyapatite/polyurethane for oral maxillofacial surgery, Mater. Sci. Eng. C. 108 (2020). https://doi.org/10.1016/j.msec.2019.110479.

  34. da Silva Brum, I., Frigo, L., Dos Santos, P.G.P., Elias, C.N., da Fonseca, G.A.M.D., de Carvalho, J.J.: Performance of nano-hydroxyapatite/beta-tricalcium phosphate and xenogenic hydroxyapatite on bone regeneration in rat calvarial defects: histomorphometric, immunohistochemical and ultrastructural analysis. Int J Nanomed. 16, 3473–3485 (2021)

    Article  CAS  Google Scholar 

  35. Kaviya, M., Ramakrishnan, P., Mohamed, S.B., Ramakrishnan, R., Gimbun, J., Veerabadran, K.M., Kuppusamy, M.R., Kaviyarasu, K., Sridhar, T.M.: Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Mater. Today Proc. 36(2), 204–207 (2021). https://doi.org/10.1016/j.matpr.2020.02.932

    Article  CAS  Google Scholar 

  36. Raneem Saudi, Mohamed A. Ibrahim, Comparison between nano-hydroxyapatite and CPP-ACPF in remineralizing early carious lesions (in vitro study), BAU J. – Creat. Sustain. Dev. 2 (2020).

  37. Kim, H., Mondal, S., Bharathiraja, S., Manivasagan, P., Moorthy, M.S., Oh, J.: Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int. 44, 6062–6071 (2018). https://doi.org/10.1016/j.ceramint.2017.12.235

    Article  CAS  Google Scholar 

  38. Liu, Y., Tang, Y., Wu, J., Sun, J., Liao, X., Teng, Z., Lu, G.: Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery. J Colloid Interface Sci. 570, 402–410 (2020). https://doi.org/10.1016/j.jcis.2020.03.010

    Article  CAS  PubMed  Google Scholar 

  39. Monmaturapoj, N., Sri-on, A., Klinsukhon, W., Boonnak, K., Prahsarn, C.: Antiviral activity of multifunctional composite based on TiO2-modified hydroxyapatite. Mater Sci Eng., C 92, 96–102 (2018). https://doi.org/10.1016/j.msec.2018.06.045

    Article  CAS  Google Scholar 

  40. Bhattacharjee, A., Fang, Y., Hooper, T.J.N., Kelly, N.L., Gupta, D., Balani, K., Manna, I., Baikie, T., Bishop, P.T., White, T.J., Hanna, J.V.: Crystal chemistry and antibacterial properties of cupriferous hydroxyapatite. Materials. 12(11), 1814 (2019). https://doi.org/10.3390/ma12111814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bazin, T., Magnaudeix, A., Mayet, R., Carles, P., Julien, I., Demourgues, A., Gaudon, M., Champion, E.: Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram Int. 47, 13644–13654 (2021). https://doi.org/10.1016/j.ceramint.2021.01.225

    Article  CAS  Google Scholar 

  42. Yanga X., Wangb Z.: Materials synthesis of biphasic ceramics of hydroxyapatite and b-tricalcium phosphate with controlled phase content and porosity, 1100.

  43. Cao, J.M., Feng, J., Deng, S.G., Chang, X., Wang, J., Liu, J.S., Lu, P., Lu, H.X., Zheng, M.B., Zhang, F., Tao, J.: Microwave-assisted solid-state synthesis of hydroxyapatite nanorods at room temperature. J Mater Sci. 40, 6311–6313 (2005). https://doi.org/10.1007/s10853-005-4221-8

    Article  CAS  Google Scholar 

  44. Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B., Yan, H.: The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram Int. 29, 629–633 (2003). https://doi.org/10.1016/S0272-8842(02)00210-9

    Article  CAS  Google Scholar 

  45. Sans, J., Sanz, V., Puiggalí, J., Turon, P., Alemán, C.: Controlled anisotropic growth of hydroxyapatite by additive-free hydrothermal synthesis. Cryst Growth Des. 21, 748–756 (2021). https://doi.org/10.1021/acs.cgd.0c00850

    Article  CAS  Google Scholar 

  46. Ebrahimi, S., Mohd Nasri, C.S.S., Bin Arshad, S.E.: Hydrothermal synthesis of hydroxyapatite powders using response surface methodology (RSM). PloS One. 16(5), e251009 (2021). https://doi.org/10.1371/journal.pone.0251009.

  47. Chesley M., Kennard R., Roozbahani S., Kim S.M., Kukk K., Mason M.: One-step hydrothermal synthesis with in situ milling of biologically relevant hydroxyapatite. Mater. Sci. Eng. C. 113 (2020). https://doi.org/10.1016/j.msec.2020.110962.

  48. Liu H.S., Chin T.S., Lai L.S., Chiu S.Y., Chung K.H., Changb C.S., Luib M.T.: Hydroxyapatite synthesized by a simplified hydrothermal method, (1997).

  49. Ferro, A.C., Guedes, M.: Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater. Sci. Eng., C 97, 124–140 (2019). https://doi.org/10.1016/j.msec.2018.11.083

    Article  CAS  Google Scholar 

  50. Bulina, N.V., Chaikina, M.V., Prosanov, I.Y.: Mechanochemical synthesis of Sr-substituted hydroxyapatite. Inorg. Mater. 54, 820–825 (2018). https://doi.org/10.1134/S0020168518080034

    Article  CAS  Google Scholar 

  51. Toriyama, M., Flavaglioli, A., Krajewski, A., Celotti, G., Piancastelli, A.: Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering. J. Eur. Ceram. 16(4), 429–436 (1996). https://doi.org/10.1016/0955-2219(95)00123-9

    Article  CAS  Google Scholar 

  52. Chaikina, M.V., Bulina, N.V., Prosanov, I.Y., Vinokurova, O.B., Ishchenko, A.V.: Structure formation of zinc-substituted hydroxyapatite during mechanochemical synthesis. Inorg. Mater. 56, 402–408 (2020). https://doi.org/10.1134/S0020168520040044

    Article  CAS  Google Scholar 

  53. Bulina, N.V., Chaikina, M.V., Prosanov, I.Y., Dudina, D.V.: Strontium and silicate co-substituted hydroxyapatite: mechanochemical synthesis and structural characterization. Mater. Sci. Eng. B. 262, 114719 (2020). https://doi.org/10.1016/j.mseb.2020.114719

    Article  CAS  Google Scholar 

  54. Fatma, T., Balci, S.: Synthesis and characterization of hydroxyapatite. G. U. J Sci 21, 21–31 (2007). https://doi.org/10.1081/MA-120016047

    Article  CAS  Google Scholar 

  55. Gomez-Vazquez, O.M., Correa-Piña, B.A., Zubieta-Otero, L.F., Castillo-Paz, A.M., Londoño-Restrepo, S.M., Rodriguez-García, M.E.: Synthesis and characterization of bioinspired nano-hydroxyapatite by wet chemical precipitation. Ceram Int. 47, 32775–32785 (2021). https://doi.org/10.1016/j.ceramint.2021.08.174

    Article  CAS  Google Scholar 

  56. Rodríguez-Lugo, V., Karthik, T.V.K., Mendoza-Anaya, D., Rubio-Rosas, E., Villaseñor Cerón, L.S., Reyes-Valderrama, M.I., Salinas-Rodríguez, E.: Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 5(8), 180962 (2018). https://doi.org/10.1098/rsos.180962.

  57. Wolff, J., Hofmann, D., Amelung, W., Lewandowski, H., Kaiser, K., Bol, R.: Rapid wet chemical synthesis for 33P-labelled hydroxyapatite – an approach for environmental research. Appl. Geochem. 97, 181–186 (2018). https://doi.org/10.1016/j.apgeochem.2018.08.010

    Article  CAS  Google Scholar 

  58. Correa-Piña, B.A., Gomez-Vazquez, O.M., Londoño-Restrepo, S.M., Zubieta-Otero, L.F., Millan-Malo, B.M., Rodriguez-García, M.E.: Synthesis and characterization of nano-hydroxyapatite added with magnesium obtained by wet chemical precipitation. Progress in Nat Sci: Mater Int 31, 575–582 (2021). https://doi.org/10.1016/j.pnsc.2021.06.006

    Article  CAS  Google Scholar 

  59. Lopez-Macipe, A., Rodriguez-Clemente, R., Hidalgo-Lopez, A., Arita, I., Garcia-Garduno, M.V., Rivera, E., Castano2, V.M.: Wet chemical synthesis of hydroxyapatite particles from nonstoichiometric solutions. J. Mater. Synth. Process. 6, 21–26 (1998).

  60. Jang, J.H., Oh, B., Lee, E.J.: Crystalline hydroxyapatite/graphene oxide complex by low-temperature sol-gel synthesis and its characterization. Ceram Int. 47, 27677–27684 (2021). https://doi.org/10.1016/j.ceramint.2021.06.192

    Article  CAS  Google Scholar 

  61. Lett, J.A., Sundareswari, M., Ravichandran, K., Latha, M.B., Sagadevan, S., Bin Johan, M.R.: Tailoring the morphological features of sol-gel synthesized mesoporous hydroxyapatite using fatty acids as an organic modifier. RSC Adv. 9, 6228–6240 (2019). https://doi.org/10.1039/c9ra00051h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tautkus, S., Ishikawa, K., Ramanauskas, R., Kareiva, A.: Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J. Solid. State. Chem. 284, 121202 (2020). https://doi.org/10.1016/j.jssc.2020.121202

    Article  CAS  Google Scholar 

  63. Gross, K.A., Chai, C.S., Kannangara, G.S.K., Ben-Nissan, B., Hanley, L.: Thin hydroxyapatite coatings via sol-gel synthesis. J. Mater. Sci. Mater. Med. 9(12), 839–843 (1998)

    Article  CAS  PubMed  Google Scholar 

  64. Yan, D., Zeng, B., Han, Y., Dai, H., Liu, J., Sun, Y., Li, F.: Preparation and laser powder bed fusion of composite microspheres consisting of poly(lactic acid) and nano-hydroxyapatite. Addit. Manuf. 34, 101305 (2020). https://doi.org/10.1016/j.addma.2020.101305

    Article  CAS  Google Scholar 

  65. Chen, S., Du, X., Wang, T., Jia, L., Huang, D., Chen, W.: Synthesis of near-infrared responsive gold nanorod-doped gelatin/hydroxyapatite composite microspheres with controlled photo-thermal property. Ceram Int. 44, 900–904 (2018). https://doi.org/10.1016/j.ceramint.2017.10.020

    Article  CAS  Google Scholar 

  66. Mendiratta, S., Ali, A.A.A., Hejazi, S.H., Gates, I.: dual stimuli-responsive pickering emulsions from novel magnetic hydroxyapatite nanoparticles and their characterization using a microfluidic platform. Langmuir 37, 1353–1364 (2021). https://doi.org/10.1021/acs.langmuir.0c02408

    Article  CAS  PubMed  Google Scholar 

  67. Lim, G.K., Wang, J., Ng, S.C., Chew, C.H., Ganl, L.M.: Processing of hydroxyapatite via microemulsion and emulsion routes. Biomater. 18(21), 1433–1439 (1997)

    Article  CAS  Google Scholar 

  68. Vargas-Becerril, N., Sánchez-Téllez, D.A., Zarazúa-Villalobos, L., González-García, D.M., Álvarez-Pérez, M.A., de León-Escobedo, C., Téllez-Jurado, L.: Structure of biomimetic apatite grown on hydroxyapatite (HA). Ceram Int. 46, 28806–28813 (2020). https://doi.org/10.1016/j.ceramint.2020.08.044

    Article  CAS  Google Scholar 

  69. Rhee, S.-H., Tanaka, J.: Hydroxyapatite coating on a collagen membrane by a biomimetic method. J. Am. Ceram. 81(11), 3029–3031 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02734.x

    Article  CAS  Google Scholar 

  70. Baltatu, M.S., Sandu, A.V., Nabialek, M., Vizureanu, P., Ciobanu, G.: Biomimetic deposition of hydroxyapatite layer on titanium alloys. Micromachines (Basel). 12(12), 1447 (2021). https://doi.org/10.3390/mi12121447

    Article  PubMed  PubMed Central  Google Scholar 

  71. Graziani, G., Berni, M., Gambardella, A., De Carolis, M., Maltarello, M.C., Boi, M., Carnevale, G., Bianchi, M.: Fabrication and characterization of biomimetic hydroxyapatite thin films for bone implants by direct ablation of a biogenic source. Mater. Sci. Eng., C 99, 853–862 (2019). https://doi.org/10.1016/j.msec.2019.02.033

    Article  CAS  Google Scholar 

  72. Beaufils, S., Rouillon, T., Millet, P., Le Bideau, J., Weiss, P., Chopart, J.P., Daltin, A.L.: Synthesis of calcium-deficient hydroxyapatite nanowires and nano-tubes performed by template-assisted electrodeposition. Mater. Sci. Eng., C 98, 333–346 (2019). https://doi.org/10.1016/j.msec.2018.12.071

    Article  CAS  Google Scholar 

  73. Chakraborty, R., Seesala, V.S., Sengupta, S., Dhara, S., Saha, P., Das, K., Das, S.: Comparison of osteoconduction, cytocompatibility and corrosion protection performance of hydroxyapatite-calcium hydrogen phosphate composite coating synthesized in-situ through pulsed electrodeposition with varying amount of phase and crystallinity. Surf Interfaces. 10, 1–10 (2018). https://doi.org/10.1016/j.surfin.2017.11.002

    Article  CAS  Google Scholar 

  74. Chakraborty, R., Seesala, V.S., Manna, J.S., Saha, P., Dhara, S.: Synthesis, characterization and cytocompatibility assessment of hydroxyapatite-polypyrrole composite coating synthesized through pulsed reverse electrochemical deposition. Mater. Sci. Eng., C 94, 597–607 (2019). https://doi.org/10.1016/j.msec.2018.10.001

    Article  CAS  Google Scholar 

  75. Nguyen, T.T., Pham, N.T., Dinh, T.T.M., Vu, T.T., Nguyen, H.S., Tran, L.D.: Electrodeposition of hydroxyapatite-multiwalled carbon nano-tube nanocomposite on Ti6Al4V. Adv. Polym. Technol. 2020, 8639687 (2020). https://doi.org/10.1155/2020/8639687

    Article  CAS  Google Scholar 

  76. Poorraeisi, M., Afshar, A.: The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel. Surf Coat Technol. 339, 199–207 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.030

    Article  CAS  Google Scholar 

  77. Ban, S., Maruno, S.: Hydrothermal-electrochemical deposition of hydroxyapatite. J. Biomed. Mater. Res. 42(3), 387–395 (1998). https://doi.org/10.1002/(sici)1097-4636(19981205)42:3%3C387::aid-jbm6%3E3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  78. Kumar, M., Dasarathy, H., Riley, C.: Electrodeposition of brushite coatings and their transformation to hydroxyapatite in aqueous solutions. J. Biomed. Mater. Res. 45(4), 302–310 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4%3C302::AID-JBM4%3E3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  79. Nakagawa D., Nakamura M., Nagai S., Aizawa M.: Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their responses to immunocytes. J. Mater. Sci. Mater. Med. 31 (2020). https://doi.org/10.1007/s10856-020-6358-z.

  80. Tseng, C.F., Fei, Y.C., Chou, Y.J.: Investigation of in vitro bioactivity and antibacterial activity of manganese-doped spray pyrolyzed bioactive glasses. J. Non Cryst. Solids. 549, 120336 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120336

    Article  CAS  Google Scholar 

  81. Vallet-Regi, M., Gutierrez-Rios, M.T., Alonso, M.P., de Frutos, M.I., Nicolopoulus, S.: Hydroxyapatite particles synthesized by pyrolysis of an aerosol. J Solid State Chem. 112, 58–64 (1994)

    Article  Google Scholar 

  82. Gibbs, D., Lohrmann, R., Orgel, L.E.: Template-directed synthesis and selective adsorption of oligoadenylates on hydroxyapatite. J. Mol. Evol. 5, 7–10 (1980)

    Google Scholar 

  83. Shebi, A., Lisa, S.: Pectin mediated synthesis of nano hydroxyapatite-decorated poly(lactic acid) honeycomb membranes for tissue engineering. Carbohydr Polym. 201, 39–47 (2018). https://doi.org/10.1016/j.carbpol.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  84. Chen, C., Sun, X., Pan, W., Hou, Y., Liu, R., Jiang, X., Zhang, L.: Graphene oxide-templated synthesis of hydroxyapatite nano-whiskers to improve the mechanical and osteoblastic performance of poly(lactic acid) for bone tissue regeneration. ACS Sustain Chem Eng. 6, 3862–3869 (2018). https://doi.org/10.1021/acssuschemeng.7b04192

    Article  CAS  Google Scholar 

  85. Ghorbani, F., Zamanian, A., Behnamghader, A., Joupari, M.D.: A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. Mater. Sci. Eng., C 94, 729–739 (2019). https://doi.org/10.1016/j.msec.2018.10.010

    Article  CAS  Google Scholar 

  86. Tari, N.E., KashaniMotlagh, M.M., Sohrabi, B.: Synthesis of hydroxyapatite particles in catanionic mixed surfactants template. Mater Chem Phys. 131, 132–135 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.078

    Article  CAS  Google Scholar 

  87. Wang, A., Yin, H., Liu, D., Wu, H., Wada, Y., Ren, M., Xu, Y., Jiang, T., Cheng, X.: Effects of organic modifiers on the size-controlled synthesis of hydroxyapatite nanorods. Appl Surf Sci. 253, 3311–3316 (2007). https://doi.org/10.1016/j.apsusc.2006.07.025

    Article  CAS  Google Scholar 

  88. Wang, A., Liu, D., Yin, H., Wu, H., Wada, Y., Ren, M., Jiang, T., Cheng, X., Xu, Y.: Size-controlled synthesis of hydroxyapatite nanorods by chemical precipitation in the presence of organic modifiers. Mater. Sci. Eng., C 27, 865–869 (2007). https://doi.org/10.1016/j.msec.2006.10.001

    Article  CAS  Google Scholar 

  89. Pramanik, N., Tarafdar, A., Pramanik, P.: Capping agent-assisted synthesis of nanosized hydroxyapatite: comparative studies of their physicochemical properties. J Mater Process Technol. 184, 131–138 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.013

    Article  CAS  Google Scholar 

  90. Brodowska, K., Łodyga-Chruścińska, E.: Schiff bases - interesting range of applications in various fields of science. Chemik. 68, 129–134 (2014). https://doi.org/10.1002/chin.201511346

    Article  CAS  Google Scholar 

  91. Xavier, A., Srividhya, N.: Synthesis and study of Schiff base ligands. IOSR J. Appl. Chem. 7(11), 6–15 (2014). www.iosrjournals.org

  92. Mohandes, F., Salavati-Niasari, M., Fathi, M., Fereshteh, Z.: Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism. Mater. Sci. Eng., C 45, 29–36 (2014). https://doi.org/10.1016/j.msec.2014.08.058

    Article  CAS  Google Scholar 

  93. Aziz, H.J., Ali, H.H.: Synthesis of a new series of Schiff bases using both traditional and the ultrasonic techniques. Iraqi Acad Sci J 15, 70–74 (2010)

    Google Scholar 

  94. Azzouz, A.S.P., Ali, R.T.: Synthesis of Schiff’s base from benzaldehyde and salicylaldehyde with amino acids. Natl. J. Chem. 37, 156–168 (2010). https://www.iasj.net/iasj/download/a63f7043f519d54b

  95. Bhagat, S., Sharma, N., Chundawat, T.S.: Synthesis of some salicylaldehyde-based Schiff bases in aqueous media. J. Chem. 2013, 909217 (2013). https://doi.org/10.1155/2013/909217

    Article  CAS  Google Scholar 

  96. Bhargavi, R., Kumar, S.P., Narayanan, V., Leelavathy, L.: Microwave synthesis, characterization, electrochemistry and antimicrobial activity of manganese acyclic Schiff complexes. Int J. Innov. Res. Sci. Eng. 2347–3207 (2015).

  97. Lede, I., Alexa, A., Bercean, V., Vlase, G., Vlase, T., Uta, L.M., Fulia, A.: Synthesis and degradation of Schiff bases containing heterocyclic pharmacophore. Int. J. Mol. Sci. 16, 1711–1727 (2015). https://doi.org/10.3390/ijms16011711

    Article  CAS  Google Scholar 

  98. Dharmaraj, N., Viswanathamurthi, P., Natarajan, K.: Ruthenium(II) complexes containing bidentate Schiff bases and their anti-fungal activity. Transition Met. Chem. 26, 105–109 (2001). https://doi.org/10.1023/A:1007132408648

    Article  CAS  Google Scholar 

  99. Tarafder, M.T.H., Khoo, T.-J., Crouse, K.A., Ali, A.M., Yamin, B.M., Fun, H.-K.: Coordination chemistry and bioactivity of some metal complexes containing two isomeric bidentate NS Schiff bases derived from S-benzyldithiocarbazate and the X-ray crystal structures of S-benzyl-β-N-(5-methyl-2-furylmethylene)dithiocarbazate and bis[S-ben. Polyhedron 21, 2691–2698 (2002). https://doi.org/10.1016/S0277-5387(02)01272-X

    Article  CAS  Google Scholar 

  100. Mohandes, F., Salavati-Niasari, M.: Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route. Mater. Sci. Eng., C 40, 288–298 (2014). https://doi.org/10.1016/j.msec.2014.04.008

    Article  CAS  Google Scholar 

  101. Mohandes, F., Salavati-Niasari, M.: Simple morphology-controlled fabrication of hydroxyapatite nanostructures with the aid of new organic modifiers. Chem. Eng. J. 252, 173–184 (2014). https://doi.org/10.1016/j.cej.2014.05.026

    Article  CAS  Google Scholar 

  102. Mohandes, F., Salavati-Niasari, M., Fereshteh, Z., Fathi, M.: Novel preparation of hydroxyapatite nanoparticles and nanorods with the aid of complexing agents. Ceram Int. 40, 12227–12233 (2014). https://doi.org/10.1016/j.ceramint.2014.04.066

    Article  CAS  Google Scholar 

  103. Mahapatra, P., Kumari, S., Sharma, S.: Synthesis of hydroxyapatite and ZnO nanoparticles via different routes and its comparative analysis. Mater Sci Res India. 13, 7–13 (2016)

    Article  CAS  Google Scholar 

  104. Mohandes, F., Salavati-Niasari, M.: In vitro comparative study of pure hydroxyapatite nanorods and novel polyethylene glycol/graphene oxide/hydroxyapatite nanocomposite. J. Nanoparticle Res. 16, 2604 (2014). https://doi.org/10.1007/s11051-014-2604-y

    Article  CAS  Google Scholar 

  105. Emami, Z., Ehsani, M., Zandi, M., Daemi, H., Ghanian, M.-H., Foudazi, R.: Modified hydroxyapatite nanoparticles reinforced nanocomposite hydrogels based on gelatin/oxidized alginate via Schiff base reaction. Carbohydr Polym Technol Appl. 2, 100056 (2021). https://doi.org/10.1016/j.carpta.2021.100056

    Article  CAS  Google Scholar 

  106. Çanakçı, D.: Synthesis and characterization of boron, copper, and zinc-doped hydroxyapatite by sol-gel method: research of absorption and thermal behavior. Preprint (Version 1), (2021). https://doi.org/10.21203/rs.3.rs-144127/v1

  107. Anandan, D., Jaiswal, A.K.: Synthesis and characterization of human bone-like hydroxyapatite using Schiff’s base. Ceram Int. 44, 9401–9407 (2018). https://doi.org/10.1016/j.ceramint.2018.02.156

    Article  CAS  Google Scholar 

  108. Pramanik, S., Agarwal, A.K., Rai, K.N., Garg, A.: Development of high strength hydroxyapatite by solid-state-sintering process. Ceram Int. 33, 419–426 (2007). https://doi.org/10.1016/j.ceramint.2005.10.025

    Article  CAS  Google Scholar 

  109. Rhee, S.H.: Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials. 23, 1147–1152 (2002). https://doi.org/10.1016/S0142-9612(01)00229-0

    Article  CAS  PubMed  Google Scholar 

  110. Ramesh, S., Natasha, A.N., Tan, C.Y., Bang, L.T., Niakan, A., Purbolaksono, J., Chandran, H., Ching, C.Y., Ramesh, S., Teng, W.D.: Characteristics and properties of hydoxyapatite derived by sol-gel and wet chemical precipitation methods. Ceram. Int. 41, 10434–10441 (2015). https://doi.org/10.1016/j.ceramint.2015.04.105

    Article  CAS  Google Scholar 

  111. Zhou, W.Y., Wang, M., Cheung, W.L., Guo, B.C., Jia, D.M.: Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion. J. Mater. Sci. Mater. Med. 19, 103–110 (2008). https://doi.org/10.1007/s10856-007-3156-9

    Article  CAS  PubMed  Google Scholar 

  112. Lee, L.H., Ha, J.S.: Deposition behavior and characteristics of hydroxyapatite coatings on Al2O3, Ti, and Ti6Al4V formed by a chemical bath method. Ceram. Int. 40, 5321–5326 (2014). https://doi.org/10.1016/j.ceramint.2013.10.109

    Article  CAS  Google Scholar 

  113. Thanh, D.T.M., Nam, P.T., Phuong, N.T., Que, L.X., Van Anh, N., Hoang, T., Lam, T.D.: Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Mater. Sci. Eng., C 33, 2037–2045 (2013). https://doi.org/10.1016/j.msec.2013.01.018

    Article  CAS  Google Scholar 

  114. Cho, J.S., Lee, J.C., Chung, S.H., Seo, J.K., Rhee, S.H.: Effect of grain size and density of spray-pyrolyzed hydroxyapatite particles on the sinterability of hydroxyapatite disk. Ceram. Int. 40, 6691–6697 (2014). https://doi.org/10.1016/j.ceramint.2013.11.130

    Article  CAS  Google Scholar 

  115. Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Salarian, R., Nemati, Z.A.: Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceram. Int. 35, 2563–2569 (2009). https://doi.org/10.1016/j.ceramint.2009.02.031

    Article  CAS  Google Scholar 

  116. Koonawoot, R., Saelee, C., Thiansem, S., Punyanitya, S.: Synthesis, control and characterization of hydroxyapatite ceramic using a solid state reaction. 1st Mae Fah Luang University International Conference, 1–9 (2012). https://mfuic2012.mfu.ac.th/electronic_proceeding/Documents/00_PDF/O-SC-C/O-SC-C-04.pdf

  117. Neira, I.S., Kolenko, Y.V., Lebedev, O.I., Tendeloo, G.V., Gupta, H.S., Guitian, F., Yoshimura, M.: An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Cryst. Growth Des. 9(1), 466–474 (2009). https://doi.org/10.1021/cg800738a

    Article  CAS  Google Scholar 

  118. Chaudhry, A., Haque, S., Kellici, S., Boldrin, P., Rehman, I., Khalid, F.A., Darr, J.A.: Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem. Commun. 21, 2286–2288 (2006). https://doi.org/10.1039/b518102j

    Article  CAS  Google Scholar 

  119. Shu, C., Yanwei, W., Hong, L., Zhengzheng, P., Kangde, Y.: Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceram Int. 31, 135–138 (2005). https://doi.org/10.1016/j.ceramint.2004.04.012

    Article  CAS  Google Scholar 

  120. Suchanek, W.L., Shuk, P., Byrappa, K., Riman, R.E., TenHuisen, K.S., Janas, V.F.: Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23, 699–710 (2002). https://doi.org/10.1016/S0142-9612(01)00158-2

    Article  CAS  PubMed  Google Scholar 

  121. Mehta, D., George, S., Mondal, P.: Synthesis of hydroxyapatite by chemical precipitation technique and study of its biodegradability. Int J Res Advent Technol 2, 159–161 (2014)

    Google Scholar 

  122. Fathi, M.H., Hanifi, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 202, 536–542 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.004

    Article  CAS  Google Scholar 

  123. Bezzi, G., Celotti, G., Landi, E., La Torretta, T.M.G., Sopyan, I., Tampieri, A.: A novel sol-gel technique for hydroxyapatite preparation. Mater Chem Phys. 78, 816–824 (2003). https://doi.org/10.1016/S0254-0584(02)00392-9

    Article  CAS  Google Scholar 

  124. Bose, S., Saha, S.K.: Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater. 15, 4464–4469 (2003). https://doi.org/10.1021/cm0303437

    Article  CAS  Google Scholar 

  125. Chen, B.H., Chen, K.I., Ho, M.L., Chen, H.N., Chen, W.C., Wang, C.K.: Synthesis of calcium phosphates and porous hydroxyapatite beads prepared by emulsion method. Mater Chem Phys. 113, 365–371 (2009). https://doi.org/10.1016/j.matchemphys.2008.06.040

    Article  CAS  Google Scholar 

  126. Jarudilokkul, S., Tanthapanichakoon, W., Boonamnuayvittaya, V.: Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf A Physicochem Eng Asp. 296, 149–153 (2007). https://doi.org/10.1016/j.colsurfa.2006.09.038

    Article  CAS  Google Scholar 

  127. Bigi, A., Boanini, E., Bracci, B., Facchini, A., Panzavolta, S., Segatti, F., Sturba, L.: Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 26, 4085–4089 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.034

    Article  CAS  PubMed  Google Scholar 

  128. Honda, M., Kikushima, K., Kawanobe, Y., Konishi, T., Mizumoto, M., Aizawa, M.: Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route. J Mater Sci Mater Med. 23, 2923–2932 (2012). https://doi.org/10.1007/s10856-012-4744-x

    Article  CAS  PubMed  Google Scholar 

  129. An, G.H., Wang, H.J., Kim, B.H., Jeong, Y.G., Choa, Y.H.: Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition. Mater. Sci. Eng., A 448–451, 821–824 (2007). https://doi.org/10.1016/j.msea.2006.02.436

    Article  CAS  Google Scholar 

  130. Zhang, H., Liu, M., Fan, H., Zhang, X.: Carbonated nano hydroxyapatite crystal growth modulated by poly(ethylene glycol) with different molecular weights. Cryst Growth Des. 12, 2204–2212 (2012). https://doi.org/10.1021/cg200917y

    Article  CAS  Google Scholar 

  131. Azzaoui, K., Lamhamdi, A., Mejdoubi, E., Berrabah, M., Elidrissi, A., Hammouti, B., Zaoui, S., Yahyaoui, R.: Synthesis of nanostructured hydroxyapatite in presence of polyethylene glycol 1000. J Chem Pharm Res. 5, 1209–1216 (2013)

    Google Scholar 

  132. Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., Baino, F.: Hydroxyapatite for biomedical applications: a short overview. Ceramics. 4, 542–563 (2021). https://doi.org/10.3390/ceramics4040039

    Article  CAS  Google Scholar 

  133. George, S.M., Nayak, C., Singh, I., Balani, K.: Multifunctional hydroxyapatite composites for orthopedic applications: a review. ACS Biomater Sci Eng. 8, 3162–3186 (2022). https://doi.org/10.1021/acsbiomaterials.2c00140

    Article  CAS  PubMed  Google Scholar 

  134. Panda, S., Biswas, C.K., Paul, S.: A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceram Int. 47, 28122–28144 (2021). https://doi.org/10.1016/j.ceramint.2021.07.100

    Article  CAS  Google Scholar 

  135. Beig, B., Liaqat, U., Niazi, M.F.K., Douna, I., Zahoor, M., Niazi, M.B.K.: Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: a review. Coatings 10, 1–29 (2020). https://doi.org/10.3390/coatings10121249

    Article  CAS  Google Scholar 

  136. Sidane, D., Chicot, D., Yala, S., Ziani, S., Khireddine, H., Iost, A., Decoopman, X.: Study of the mechanical behavior and corrosion resistance of hydroxyapatite sol-gel thin coatings on 316 L stainless steel pre-coated with titania film. Thin Solid Films 593, 71–80 (2015). https://doi.org/10.1016/j.tsf.2015.09.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the members and fellow researchers of the Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT) and School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Funding

This work was supported by the Board of Research in Nuclear Sciences (BRNS), Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE), Government of India, under the Young Scientist Research Award scheme (YSRA) File No. 54/14/02/2021-BRNS/.

Author information

Authors and Affiliations

Authors

Contributions

Ms Dhivyaa Anandan contributed by writing the review article. Dr Amit Kumar Jaiswal has contributed by analyzing and approving the article.

Corresponding author

Correspondence to Amit Kumar Jaiswal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandan, D., Jaiswal, A.K. Synthesis methods of hydroxyapatite and biomedical applications: an updated review. J Aust Ceram Soc 60, 663–679 (2024). https://doi.org/10.1007/s41779-023-00943-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00943-2

Keywords

Navigation