Skip to main content

Advertisement

Log in

Effect of Acid, Alkali and Alkali–Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla catla Fish Scales

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, scales of Catla catla fish are treated using acid, alkali and alkali–acid followed by calcination at \(1000\,^{\circ }\hbox {C}\) to produce hydroxyapatite (HAp). The aim of the work is to investigate the effect of the three pretreatment processes on the physicochemical and bioactive properties of the synthesized HAp. The confirmation tests for the formation of HAp in the calcined powders are conducted using FTIR and XRD analysis. TGA is carried out on the synthesized HAp to investigate the thermal stability and phase changes which indicates that the HAp is thermally stable at \(800\,^{\circ }\hbox {C}\) with a maximum weight loss of 5.5%. Surface morphology of the synthesized powder is investigated by SEM analysis equipped with EDX to study its chemical composition. SEM-EDX analysis indicates highly porous morphology of HAp with fairly accurate Ca/P ratio to that of natural bone HAp. TEM analysis is performed to observe the morphology of the crystal and to determine the particle sizes of the synthesized HAp. The micrographs reveal formation of polycrystalline HAp particles having particle size in the range of 320–385 nm. Bioactivity test is performed on the extracted HAp which confirms the bioactive nature of all the pretreated HAp. The study reveals that acid-treated fish scale-derived HAp shows improved physicochemical and bioactive properties compared to the other two processes. The developed HAp may be a potential material in the field of biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh, S.; Natasha, A.N.; Tan, C.Y.; Bang, L.T.; Ramesh, S.; Ching, C.Y.: Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 42, 7824–7829 (2016)

    Article  Google Scholar 

  2. We, F.: Preparation and characterization of hydroxyapatite from eggshell. Ceram. Int. 36, 803–806 (2010). https://doi.org/10.1016/j.ceramint.2009.09.020

    Article  Google Scholar 

  3. Muhammad, N.; Gao, Y.; Iqbal, F.; Ahmad, P.; Ge, R.; Nishan, U.; Rahim, A.; Gonfa, G.; Ullah, Z.: Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment. Sep. Purif. Technol. 161, 129–135 (2016). https://doi.org/10.1016/j.seppur.2016.01.047

    Article  Google Scholar 

  4. Mondal, S.; Bardhan, R.; Mondal, B.; Dey, A.; Mukhopadhyay, S.S.; Roy, S.; Guha, R.; Roy, K.: Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application. Bull. Mater. Sci. 35, 683–691 (2012). https://doi.org/10.1007/s12034-012-0346-y

    Article  Google Scholar 

  5. Huang, Y.C.; Hsiao, P.C.; Chai, H.J.: Hydroxyapatite extracted from fish scale: effects on MG63 osteoblast-like cells. Ceram. Int. 37, 1825–1831 (2011). https://doi.org/10.1016/j.ceramint.2011.01.018

    Article  Google Scholar 

  6. Pon-On, W.; Suntornsaratoon, P.; Charoenphandhu, N.; Thongbunchoo, J.; Krishnamra, N.; Tang, I.M.: Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater. Sci. Eng. C. 62, 183–189 (2016). https://doi.org/10.1016/j.msec.2016.01.051

    Article  Google Scholar 

  7. Shi, P.; Liu, M.; Fan, F.; Yu, C.; Lu, W.; Du, M.: Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C. 90, 706–712 (2018). https://doi.org/10.1016/j.msec.2018.04.026

    Article  Google Scholar 

  8. Mondal, B.; Mondal, S.; Mondal, A.; Mandal, N.: Fish scale derived hydroxyapatite scaffold for bone tissue engineering. Mater. Charact. 121, 112–124 (2016). https://doi.org/10.1016/j.matchar.2016.09.034

    Article  Google Scholar 

  9. Tadashi, K.; Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  10. Destainville, A.; Champion, E.; Laborde, E.: Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80, 269–277 (2003)

    Article  Google Scholar 

  11. Wei, M.; Evans, J.H.: Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J. Mater. Sci. Mater. Med. 14, 311–320 (2003). https://doi.org/10.1023/A:1022975730730

    Article  Google Scholar 

  12. Meejoo, S.; Maneeprakorn, W.; Winotai, P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta. 447, 115–120 (2006). https://doi.org/10.1016/j.tca.2006.04.013

    Article  Google Scholar 

  13. Mondal, S.; Mondal, A.; Mandal, N.; Mondal, B.; Mukhopadhyay, S.S.; Dey, A.; Singh, S.: Physico-chemical characterization and biological response of Labeo rohita-derived hydroxyapatite scaffold. Bioprocess Biosyst. Eng. 37, 1233–1240 (2014). https://doi.org/10.1007/s00449-013-1095-z

    Article  Google Scholar 

  14. Manalu, J.L.; Soegijono, B.; Indrani, D.J.: Characterization of hydroxyapatite derived from bovine bone characterization of hydroxyapatite derived from bovine. Asian J. Appl. Sci. 03, 758–765 (2015)

    Google Scholar 

  15. Javadinejad, H.R.; Rizi, M.S.; Aghababaei, E.; Marzieh, M.: Thermal stability of nano-hydroxyapatite synthesized via mechanochemical treatment. Arab. J. Sci. Eng. (2017). https://doi.org/10.1007/s13369-017-2498-y

    Google Scholar 

  16. Farzadi, A.; Bakhshi, F.; Aminian, A.: Synthesis and characterization of hydroxyapatite/b-tricalcium phosphate nanocomposites using microwave irradiation. Ceram. Int. 37, 65–71 (2011). https://doi.org/10.1016/j.ceramint.2010.08.021

    Article  Google Scholar 

  17. Bardhan, R.; Mahata, S.; Mondal, B.; Bardhan, R.; Mahata, S.; Mondal, B.: Processing of natural resourced hydroxyapatite from eggshell waste by wet precipitation method Processing of natural resourced hydroxyapatite from eggshell waste by wet precipitation method. Adv. Appl. Ceram. 110, 80–86 (2011). https://doi.org/10.1179/1743676110Y.0000000003

    Article  Google Scholar 

  18. Gautam, C.R.; Tamuk, M.; Manpoong, C.W.; Gautam, S.S.; Kumar, S.; Singh, A.K.; Mishra, V.K.: Microwave synthesis of hydroxyapatite bioceramic and tribological studies of its composites with SrCO\(_3\) and ZrO\(_2\). J. Mater. Sci. 51, 4973–4983 (2016). https://doi.org/10.1007/s10853-016-9802-1

    Article  Google Scholar 

  19. Panda, N.N.; Pramanik, K.; Sukla, L.B.: Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess Biosyst. Eng. 37, 433–440 (2014). https://doi.org/10.1007/s00449-013-1009-0

    Article  Google Scholar 

  20. Mondal, S.; Mahata, S.; Kundu, S.; Mondal, B.: Processing of natural resourced hydroxyapatite ceramics from fish scale. Adv. Appl. Ceram. 109, 234–239 (2010). https://doi.org/10.1179/174367509X12581069052090

    Article  Google Scholar 

  21. Mondal, S.; Pal, U.; Dey, A.: Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram. Int. 42, 18338–18346 (2016). https://doi.org/10.1016/j.ceramint.2016.08.165

    Article  Google Scholar 

  22. Akram, M.; Ahmed, R.; Shakir, I.; Ibrahim, W.A.W.; Hussain, R.: Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014). https://doi.org/10.1007/s10853-013-7864-x

    Article  Google Scholar 

  23. Xu, J.L.; Khor, K.A.; Dong, Z.L.; Gu, Y.W.; Kumar, R.; Cheang, P.: Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (rf) thermal plasma. Mater. Sci. Eng. A. 374, 101–108 (2004). https://doi.org/10.1016/j.msea.2003.12.040

    Article  Google Scholar 

  24. Jr, R.T.C.; Thouzellier, C.; Pawłowski, L.: Evaluation of the in-vitro behavior of nanostructured hydroxyapatite and zinc doped hydroxyapatite coatings obtained using solution precursor plasma spraying. J. Biomater. 106, 2101–2108 (2017). https://doi.org/10.1002/jbm.b.34014

    Google Scholar 

  25. Mu, F.A.; Mu, L.: Preferred growth orientation of biomimetic apatite crystals preferred growth orientation of biomimetic apatite crystals. J. Cryst. Growth. 304, 464–471 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.014

    Article  Google Scholar 

  26. Chen, D.Z.; Tang, C.Y.; Chan, K.C.; Tsui, C.P.; Yu, P.H.F.; Leung, M.C.P.; Uskokovic, P.S.: Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 67, 1617–1626 (2007). https://doi.org/10.1016/j.compscitech.2006.07.034

    Article  Google Scholar 

  27. Priyadarshini, U.A.B.; Grace, A.N.: Fabrication and characterization of Ag doped hydroxyapatite-polyvinyl alcohol composite nano fibers and its in vitro biological evaluations for bone tissue engineering applications. J. Sol-Gel Sci. Technol. 81, 750–761 (2017). https://doi.org/10.1007/s10971-016-4243-5

    Article  Google Scholar 

  28. Miculescu, F.; Mocanu, A.; Maidaniuc, A.; Dascalu, C.; Miculescu, M.; Voicu, S.I.; , Ciocoiu, R.C.: Biomimetic calcium phosphates derived from marine and land bioresources. https://doi.org/10.5772/intechopen.71489

  29. Miecznik Brzezinska, J.; Jelen, P.; Haberko, K.; Mozgawa, W.; Sitarz, M.: The effect of NaOH and KOH treatment on the behavior of \(\text{ CO }_{3}^{2-}\) and \(\text{ OH }^{-}\) groups in natural origin hydroxyapatite. Ceram. Int. 43, 12540–12545 (2017). https://doi.org/10.1016/j.ceramint.2017.06.127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payel Deb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Deoghare, A.B. Effect of Acid, Alkali and Alkali–Acid Treatment on Physicochemical and Bioactive Properties of Hydroxyapatite Derived from Catla catla Fish Scales. Arab J Sci Eng 44, 7479–7490 (2019). https://doi.org/10.1007/s13369-019-03807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03807-9

Keywords

Navigation