Skip to main content
Log in

Reoxidation of Al-Killed Ultra-Low C Steel by FetO in RH Slag: Experiment, Reaction Rate Model Development, and Mechanism Analysis

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To elucidate the reoxidation mechanism of Al-killed ultra-low C steel by FetO-containing slag, the kinetics of a reaction 2Al + 3(FetO) = (Al2O3) + 3Fe between the steel and CaO–Al2O3–FetO–MgOsat. slag was investigated mostly at 1823 K. Al contents (total and soluble), and total O content in steel samples were measured during the reactions under various initial compositions of slag ((pct CaO)\(_0\)/(pct Al2O3)\(_0\), (Fe\(_t\)O)\(_0\)), and the reaction temperature. The experimental results were analyzed using the reaction rate model developed in the present study, which is based on probable rate controlling step and employing CALPHAD thermodynamics using FactSage thermochemical software and databases. When the (pct Fe\(_t\)O)\(_0\) was higher than 10, the rate model could explain the measured data with an assumption that the rate was solely controlled by mass transport of Al in the steel. However, mixed transport control theory should be used to interpret the reaction rate when the (pct Fe\(_t\)O)\(_0\) was lower than 10. Decreasing (pct Fe\(_t\)O) during the reoxidation reaction changes the reaction mechanism in terms of the mode of rate-controlling step. The mass transport coefficient of Al in the steel (k MAl was \(5\times 10^{-4}\) m s\(^{-1}\) at 1823 K (1550 °C), which is in favorable agreement with those in the literature. The mass transport coefficients of Al\(_2\)O\(_3\) was formulated to depend on the viscosity of the slag. In the mixed transport control regime, the apparent mass transport coefficient gradually decreased due to the slow mass transport of Al\(_2\)O\(_3\) as a resistance to the overall mass transport. This was also additionally supported by evaluating the activation energy of the apparent mass transport coefficient, which turned out to increase as the reoxidation reaction proceeds. Therefore, it can be concluded that the reaction mechanism gradually changes during the reoxidation reaction. (pct CaO)\(_0\)/(pct Al\(_2\)O\(_3\))\(_0\) ratio affects the reoxidation rate only when (Fe\(_t\)O)\(_0\) was low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Jiang, X. Hu, G. He, H. Peng, H. Wang, Y. Liu, Met. Mater. Int. 26, 1295–1305 (2020)

    Article  CAS  Google Scholar 

  2. V.J. Martinez, J.I. Verdeja, J.A. Pero-Sanz, Mater. Charact. 46, 45–53 (2001)

    Article  CAS  Google Scholar 

  3. J. Choi, J. Kim, POSCO Tech Rep 20, 7–11 (2017)

    Google Scholar 

  4. G. Yin, C. Yang, Y. Lu, J. Mater. Sci. Technol. 26, 433–38 (2010)

    Article  CAS  Google Scholar 

  5. C.J. Treadgold, Ironmak. Steelmaking 30, 120–24 (2003)

    Article  CAS  Google Scholar 

  6. M. Wang, Y.-P. Bao, H. Cui, H.-J. Wu, W.-S. Wu, ISIJ Int. 50, 1606–11 (2010)

    Article  CAS  Google Scholar 

  7. Q. Ren, Y. Zhang, Y. Ren, L. Zhang, J. Wang, Y. Wang, J. Mater. Sci. Technol. 61, 147–58 (2021)

    Article  Google Scholar 

  8. T.S. Kim, Y. Chung, L. Holappa, J.H. Park, Metall. Mater. Trans. B 48B, 1736–47 (2017)

    Article  CAS  Google Scholar 

  9. S. Chatterjee, D. Li, K. Chattopadhyay, ISIJ Int. 56, 1889–1892 (2016)

    Article  CAS  Google Scholar 

  10. C. Chen, L.T.I. Jonsson, A. Tilliander, G. Cheng, P.G. Jönsson, Chem. Eng. Sci. 137, 914–937 (2015)

    Article  CAS  Google Scholar 

  11. R. Singla, S. Tripathy, S.K. Das, Chem. Eng. Sci. 203, 391–401 (2019)

    Article  CAS  Google Scholar 

  12. E. Zinngrebe, J. Small, S. van der Laan, A. Westendorp, Metall. Mater. Trans. B 51, 2321–2338 (2020)

    Article  CAS  Google Scholar 

  13. J.-H. Lee, M.-H. Kang, S.-K. Kim, Y.-B. Kang, ISIJ Int. 58, 1257–1266 (2018)

    Article  CAS  Google Scholar 

  14. J.-H. Lee, S.-K. Kim, M.-H. Kang, Y.-B. Kang, BHM Berg- und Hüttenmännische Monatshefte 163, 18–22 (2018)

    Article  CAS  Google Scholar 

  15. J.-H. Lee, M.-H. Kang, S.-K. Kim, J. Kim, M.-S. Kim, Y.-B. Kang, ISIJ Int. 59, 749–758 (2019)

    Article  CAS  Google Scholar 

  16. B. Thomas ,H. Bai, 18rd Process Technology Division Conference Proceedings, vol. 18, 2001, pp. 895–912

  17. Y. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, J. Vleugels, ISIJ Int. 42, 1234–1240 (2002)

    Article  CAS  Google Scholar 

  18. S. Basu, S.K. Choudhary, N.U. Girase, ISIJ Int. 44, 1653–1660 (2004)

    Article  CAS  Google Scholar 

  19. S.-M. Lee, S.-J. Kim, Y.-B. Kang, H.-G. Lee, ISIJ Int. 52, 1730–1739 (2012)

    Article  CAS  Google Scholar 

  20. X. Deng, C. Ji, W. Dong, L. Li, X. Yin, Y. Yang, A. McLean, Ironmak. Steelmaking 45, 592–602 (2018)

    Article  CAS  Google Scholar 

  21. H. Yasunaka, R. Yamanaka, T. Inoue, T. Saito, Tetsu-to-Hagane 81, 529–534 (1995)

    Article  CAS  Google Scholar 

  22. H. Sun, K. Mori, ISIJ Int. 36, S34–S37 (1996)

    Article  Google Scholar 

  23. J.-Y. Choi, H.-G. Lee, J.-S. Kim, ISIJ Int. 42, 852–860 (2002)

    Article  CAS  Google Scholar 

  24. S. Feichtinger, S.K. Michelic, Y.-B. Kang, C. Bernhard, J. Am. Ceram. Soc. 97, 316–325 (2014)

    Article  CAS  Google Scholar 

  25. A.-H. Bui, H.-M. Ha, I.-S. Chung, H.-G. Lee, Met. Mater. Int. 11, 319–326 (2005)

    Article  CAS  Google Scholar 

  26. A.-H. Bui, H.-M. Ha, Y.-B. Kang, I.-S. Chung, H.-G. Lee, Met. Mater. Int. 11, 183–190 (2005)

    Article  CAS  Google Scholar 

  27. Y.-J. Park, Y.-M. Cho, W.-Y. Cha, Y.-B. Kang, J. Am. Ceram. Soc. 103, 2210–2224 (2020)

    Article  CAS  Google Scholar 

  28. M. Valdez, G.S. Shannon, S. Sridhar, ISIJ Int. 46, 450–457 (2006)

    Article  CAS  Google Scholar 

  29. M.A. Rhamdhani, K.S. Coley, G.A. Brooks, Metall. Mater. Trans. B 36B, 219–227 (2005)

    Article  CAS  Google Scholar 

  30. D.J. Kim, J.H. Park, Metall. Mater. Trans. B 43B, 875–886 (2012)

    Article  CAS  Google Scholar 

  31. M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee, Y.-B. Kang, Metall. Mater. Trans. B 44B, 299–308 (2013)

    Article  CAS  Google Scholar 

  32. Y.-B. Kang, M.-S. Kim, S.-W. Lee, J.-W. Cho, M.-S. Park, H.-G. Lee, Metall. Mater. Trans. B 44B, 309–316 (2013)

    Article  CAS  Google Scholar 

  33. J. Park, S. Sridhar, R.J. Fruehan, Metall. Mater. Trans. B 45B, 1380–1388 (2014)

    Article  CAS  Google Scholar 

  34. P. Ni, T. Tanaka, M. Suzuki, M. Nakamoto, M. Ersson, P.G. Jönsson, ISIJ Int. 59, 2024–2035 (2019)

    Article  CAS  Google Scholar 

  35. A.-J. Deng, D.-D. Fan, H.-C. Wang, C.-H. Li, J. Iron. Steel Res. Int. 27, 409–419 (2020)

    Article  CAS  Google Scholar 

  36. M.-S. Kim, M.-S. Park, Y.-B. Kang, Metall. Mater. Trans. B 50B, 2077–2082 (2019)

    Article  CAS  Google Scholar 

  37. M.-S. Kim, M.-S. Park, S.-E. Kang, J.-K. Park, Y.-B. Kang, ISIJ Int. 58, 686–695 (2018)

    Article  CAS  Google Scholar 

  38. M.-S. Kim, Y.-B. Kang, Calphad 61, 105–115 (2018)

    Article  CAS  Google Scholar 

  39. M.-S. Kim, M.-S. Park, S.-H. Jung, S.-Y. Kim, Y.-B. Kang, Metall. Mater. Trans. B 51B, 3067–3078 (2020)

    Article  CAS  Google Scholar 

  40. T. Isono, K. Ohnuki, K. Umezawa, 4th international conference on Molten Slags and Fluxes, (1992), 493–498

  41. T. Ogura, R. Fujiwara, R. Mochizuki, Y. Kawamoto, T. Oishi, M. Iwase, Metall. Trans. B 23, 459–466 (1992)

    Article  Google Scholar 

  42. H. Ohta, H. Suito, Metall. Mater. Trans. B 29B, 119–129 (1998)

    Article  CAS  Google Scholar 

  43. S. Basu, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 41B, 414–419 (2010)

    Article  CAS  Google Scholar 

  44. S. Basu, A.K. Lahiri, S. Seetharaman, Metall. Mater. Trans. B 39B, 447–456 (2008)

    Article  CAS  Google Scholar 

  45. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33, 295–311 (2009)

    Article  CAS  Google Scholar 

  46. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, Calphad 54, 35–53 (2016)

    Article  CAS  Google Scholar 

  47. A.D. Pelton, P. Chartrand, Metall. Mater. Trans. A 32A, 1355–1360 (2001)

    Article  CAS  Google Scholar 

  48. M.-K. Paek, J.-J. Pak, Y.-B. Kang, Metall. Mater. Trans. B 46B, 2224–2233 (2015)

    Article  CAS  Google Scholar 

  49. Y.-B. Kang, ISIJ Int. 60, 2717–2730 (2020)

    Article  CAS  Google Scholar 

  50. A. Karasev, H. Suito, Metall. Mater. Trans. B 30B, 259–270 (1999)

    Article  CAS  Google Scholar 

  51. H. Suito, Proc. of the Ethem Turkdogan Symposium 141–152 (1994)

  52. K. R. Lee, H. Suito ,Metallurgical and Materials Transactions B, vol. 27, (1996), p. 423

  53. M.L. Turpin, J.F. Elliott, J. Iron Steel Inst. Lond. 204, 217–225 (1966)

    CAS  Google Scholar 

  54. G. Forward, J.F. Elliott, J. Metals 19, 54–59 (1967)

    CAS  Google Scholar 

  55. B. Larsen, in “Basic Open Hearth Steelmaking With Supplement on Oxygen in Steelmaking”, chapter 19. ed. by G. Derge, (AIME, 1964), pp. 583–611

  56. R.A. Lange, I.S. Carmichael, Geochim. Cosmochim. Acta 51, 2931–2946 (1987)

    Article  CAS  Google Scholar 

  57. A.N. Grundy, H. Liu, I.-H. Jung, S.A. Decterov, A.D. Pelton, Int. J. Mater. Res. 99, 1185–1194 (2008)

    Article  CAS  Google Scholar 

  58. E. Turkdogan, P. Grieveson, J. Beisler, Trans. Metall. Soc. AIME 227, 1258–1264 (1963)

    CAS  Google Scholar 

  59. K.R. Lee, H. Suito, Metall. Mater. Trans. B 25B, 893–902 (1994)

    Article  CAS  Google Scholar 

  60. V. Espejo, M. Iwase, Metall. Mater. Trans. B 26B, 257–264 (1995)

    Article  CAS  Google Scholar 

  61. Y.-Q. Ji, C.-Y. Liu, Y. Lu, H.-X. Yu, F.-X. Huang, X.-H. Wang, Metall. Mater. Trans. B 49B, 3127–3136 (2018)

    Article  CAS  Google Scholar 

  62. Y.-Q. Ji, C.-Y. Liu, H.-X. Yu, X.-X. Deng, F.-X. Huang, X.-H. Wang, J. Iron. Steel Res. Int. 27, 402–408 (2020)

    Article  CAS  Google Scholar 

  63. T.-S. Kim, J.-H. Park, ISIJ Int. 61, 724–733 (2021)

    Article  CAS  Google Scholar 

  64. M. Martín, M. Rendueles, M. Díaz, Chem. Eng. Sci. 60, 5781–5791 (2005)

    Article  CAS  Google Scholar 

  65. J.S. Han, Y. Chung, J.H. Park, Met. Mater. Int. 25, 1360–1365 (2019)

    Article  CAS  Google Scholar 

  66. B. Ma, Q. Zhu, Y. Sun, J. Yu, Y. Li, J. Mater. Sci. Technol. 26, 715–720 (2010)

    Article  CAS  Google Scholar 

  67. H.-M. Hong ,Y.-B. Kang, ISIJ International, vol. 61, (2021), No. 9, https://doi.org/10.2355/isijinternational.ISIJINT-2020-596

Download references

Acknowledgments

This work was financially supported by POSCO, Rep. of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2021, accepted May 9, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, YM., Cha, WY. & Kang, YB. Reoxidation of Al-Killed Ultra-Low C Steel by FetO in RH Slag: Experiment, Reaction Rate Model Development, and Mechanism Analysis. Metall Mater Trans B 52, 3032–3044 (2021). https://doi.org/10.1007/s11663-021-02220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02220-8

Navigation