Skip to main content
Log in

Microstructures and Formation of Tundish Clogging Deposits in Ti-Alloyed Al-Killed Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Correction to this article was published on 21 July 2020

This article has been updated

Abstract

The continuous casting of Ti-alloyed Al-killed steels traditionally experiences clogging in the tundish, impeding stable operation. We studied the microstructures and mode of formation of such clogging deposits in tundish skulls recovered after long cast series. We sampled the steel skull along the whole tundish bottom from under the ladle shroud (impact zone) up to the tundish well and nozzle. The microstructures imply that the steel solidifies to the refractory (gunning mass) and remains partially solid through the entire cast. Thus, a “mushy zone” of steel loaded with solid delta ferrites is present along the margins of the steel during casting. In this mushy zone, the widely observed clusters of variably sintered alumina (NMI) accumulate, along with a substantial amount of gas bubbles acting as inclusion scavengers. The clustered alumina particles show a lognormal particle size distribution (PSD) in all locations, which becomes more pronounced if correcting for the observable sintering. Sintering of alumina size distributions linearizes a PSD, and further evolution, once the deposit is locked in place, occurs by Ostwald ripening, introducing skewness to the distributions. The observed PSDs contrast with the established log-linearity of PSDs of individual floating alumina NMI in the bulk steel, and suggest that the source of the alumina in the clogging deposits is not the passing bulk steel. However, ubiquitous sedimentary features show that the alumina particles are also not grown by reoxidation in situ. An upstream source separate from the bulk stream must be inferred, which is also required by the consistent sporadic presence of oxidic materials which cannot be derived from local sidewall reaction. In summary, the development of clogging deposits in this type of steel is an example of “slurry casting” of partially solidifying steel over thermal loss surfaces of refractories in the nozzle area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 21 July 2020

    This article was updated to correct errors in figure order and citations introduced during production.

References

  1. Gao, Y. & Sorimachi, K.: ISIJ Int. (1993) 33:291-297

    Article  CAS  Google Scholar 

  2. K.G. Rackers and B. Thomas: Proc. 78th Steelmaking Conf., Nashville, 1995, pp. 723–34.

  3. Matsui, T., Ikemoto, T., Sawano, K., Sawada, I.: Taikabutsu Overseas, (1997) 18: 3-9

    Google Scholar 

  4. J. Smith and K. Peaslee: AISI/DOE Technology Roadmap Program Final Report, Pittsburgh, 2002, p. 229.

  5. Andersson, M., Appelberg, J., Tilliander, A., Nakajima, K., Shibata, H., Kitamura, S., Jonsson, L., Jönsson, P.: ISIJ Intl. (2006) 46: 814-823

    Article  CAS  Google Scholar 

  6. V. Garcia da Silva: PhD thesis, PPGEM (UFRGS), Porto Alegre, 2009, p. 98.

  7. K. Janiszewski and Z. Kudlinski: Metal 2006 Conf., 2006, pp. 1–9.

  8. L. Zhang and B. Thomas: XXIV. Natl. Steelmaking Symposium, Morelia, 2003, pp. 138–83.

  9. Alekseenko, A., Baibekova, E., Kuznetsov, N., Baldaev, B., Ziborov, A., Ponomarenko, D., Ponomarenko, A.: Russian metallurgy (Metally) (2007), 7:94-97

    Google Scholar 

  10. Pack, A., Hoernes, S., Goebbels, M., Bross, R., Buhr, A.: Eur. J. Min. (2005), 17: 483-493

    Article  CAS  Google Scholar 

  11. Khanna, R., Ikram Ul-Haq, M., Wang, Y., Seetharaman, S., Sahajwalla, V.: Met. Mat. Trans. Ser. B, (2011), 42B: 677-684

    Article  Google Scholar 

  12. Lee JH, Kang MH, Kim SK, Kim J, Kim MS, Kang YB: ISIJ Int., 2019, 59, 749-758.

    Article  CAS  Google Scholar 

  13. Burty, M., Peeters, L., Perrin, E., Münzer, S., Colucci, P., Salvadori, D., Schadow, F., Valcarcel, J., & Claes, J.: Rev. de Metallurgie (2005), 11:745-751

    Article  Google Scholar 

  14. Zinngrebe, E., Van Hoek, C., Visser, H., Westendorp, A. & Jung, IH: ISIJ Intl. (2012), 52:52-61

    Article  CAS  Google Scholar 

  15. Van Ende, MA, Guo, M., Zinngrebe, E., Dekkers, R., Proost, J., Blanpain, B. & Wollants, P.: Ironmaking Steelmaking (2009), 36:201-208

    Article  Google Scholar 

  16. Randolph, A. & Larsen, M.: Theory of Particulate Processes, 2nd edn. Academic Press, San Diego, 1988.

    Google Scholar 

  17. Higgins, M.: Am. Miner. (2000), 85:1105-1116

    Article  CAS  Google Scholar 

  18. Van Ende, M., Guo, M., Zinngrebe, E., Blanpain, B., Jung, IH.: ISIJ Intl. (2013), 53:1974-1982

    Article  Google Scholar 

  19. Seo, M., Cho, JW, Kim, KC, & Kim, SH: ISIJ Intl. (2014), 54:475-481

    Article  CAS  Google Scholar 

  20. Yang, W., Zhang, Y, Zhang, LF, Duan, H., Wang, L.: J. Iron Steel Res. Intl. (2015), 22:1069-1077

    Article  Google Scholar 

  21. Adaba, O., Kaushik, P., Omalley, R., Lekakh, S., Von Richards, L., Mantel, E., Hall, R., Ellis, E.: Iron Steel Technol., 31, 38-49 (2017).

    Google Scholar 

  22. O. Adaba: Dissertation, University of Missouri – La Rolla, Doctoral Dissertations 2801, 2019. https://scholarsmine.mst.edu/doctoral_dissertations/2801

  23. Zhang, L. & Pluschkell W.: Ironmaking & Steelmaking (2003), 30: 106-110

    Article  CAS  Google Scholar 

  24. Eberl, D., Drits, V., & Srodon, J.: Am. J. Sci. (1998), 298:499-533

    Article  CAS  Google Scholar 

  25. McCoy, B.: J. Colloid and Interface Sci. (2001), 240: 139-149

    Article  CAS  Google Scholar 

  26. Kalisz, D., Zak, P.: Kovove Mater. (2015), 53:35-41

    Article  CAS  Google Scholar 

  27. Ma, Z., Janke, D.: ISIJ Intl. (1998), 38: 46-52

    Article  CAS  Google Scholar 

  28. Flemings, MC.: Metallurgical Transactions Ser. A (1991), 22A:957-981

    Article  CAS  Google Scholar 

  29. Zhao, DG, Gao, M., Wang, SH, Wang, YF: Ironmaking Steelmaking (2016), 44:578-594

    Google Scholar 

Download references

Acknowledgments

We thank Tata Steel for permission to publish. Many colleagues at Tata Steel collaborated in this work. Special thanks for their collaboration go to Frank van der Does, Corrie van Hoek, Patricia Romano Triguero, Erwin Bouwens, Henk Visser, Wouter Tiekink, Arnoud Kamperman, Bernadeta Karnasiewicz and Gert Abbel. The research also profited from discussions with colleagues outside of Tata Steel, especially In Ho Jung, Marie Aline van Ende and Joo Hyun Park. The reviewer’s efforts helped to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Zinngrebe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 31, 2018.

This article was updated to correct image citation and ordering errors introduced during production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinngrebe, E., Small, J., van der Laan, S. et al. Microstructures and Formation of Tundish Clogging Deposits in Ti-Alloyed Al-Killed Steel. Metall Mater Trans B 51, 2321–2338 (2020). https://doi.org/10.1007/s11663-020-01903-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01903-y

Navigation