Skip to main content
Log in

Preparation of battery-grade LiFePO4 by the precipitation method: a review of specific features

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The precipitation method is an efficient, economically feasible, and reproducible synthetic route to cathode materials for lithium-ion batteries with attractive performance characteristics, in particular, lithium iron phosphate (LiFePO4). This paper reviews the mechanisms of the key steps of the synthesis, namely, precipitation of iron phosphate FePO4 followed by its sintering with a lithium-containing raw material to give the LiFePO4 phase. The most probable interactions determining the kinetics of the precipitation process are considered using the data on the dissociation degree of the reacting components. The influence of the nature and concentrations of the commonly used sources of iron (FeSO4, FeCl3, Fe(NO3)3) and phosphorus (H3PO4, NH4H2PO4, (NH4)2HPO4), as well as the precipitation conditions (pH, temperature) on the precipitation efficiency of FePO4 is analyzed. The effect of the nature of the lithium-containing raw material (LiOH, Li2CO3, LiNO3) and the sintering (calcination) temperature on the morphology, phase composition, and electrochemical properties of the resulting LiFePO4 is discussed. The possibility is considered of obtaining spherical particles with high bulk density, which provides high specific and volumetric energy density of electrochemical cells. Based on the relationships established, optimal parameters for the synthesis of LiFePO4 with preliminary FePO4 precipitation step are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Choi, N. Shamim, A. Crawford, Q. Huang, Ch. K. Vartanian, V. V. Viswanathan, M. D. Paiss, Md J. E. Alam, D. Reed, V. Sprenkle, J. Power Sources, 2021, 511, 230419; DOI: https://doi.org/10.1016/j.jpowsour.2021.230419.

    Article  CAS  Google Scholar 

  2. H. Lund, Energy, 2007, 32, 6, 912–919; DOI: https://doi.org/10.1016/j.energy.2006.10.017.

    Google Scholar 

  3. Erdiwansyah, Mahidin, H. Husin, Nasaruddin, M. Zaki, M. Erdiwansyah, Prot. Control. Mod. Power Syst., 2021, 6, 3; DOI: https://doi.org/10.1186/s41601-021-00181-3.

    Article  Google Scholar 

  4. J. Hu, L. Li, E. Hu, S. Chae, H. Jia, T. Liu, B. Wu, Y. Bi, K. Amine, C. Wang, J. Zhang, J. Tao, J. Xiao, Nano Energy, 2021, 79, 105420; DOI: https://doi.org/10.1016/j.nanoen.2020.105420.

    Article  CAS  Google Scholar 

  5. Y. Li, Y.-F. Du, G.-H. Sun, Eco Mat., 2021, 3, 312091; DOI: https://doi.org/10.1002/eom2.12091.

    Google Scholar 

  6. C. M. Costa, J. C. Barbosa, R. Gonçalves, H. Castro, F. J. Del Campo, S. Lanceros-Méndez, Energy Storage Mater., 2021, 37, 433; DOI: https://doi.org/10.1016/j.ensm.2021.02.032.

    Article  Google Scholar 

  7. X. Zhang, Z. Li, L. Luo, Y. Fan, Z. Du, Energy, 2022, 238, 121652; DOI: https://doi.org/10.1016/j.energy.2021.121652.

    Article  CAS  Google Scholar 

  8. W. Li, Y.-G. Cho, W. Yao, Y. Li, A. Cronk, R. Shimizu, M. A. Schroeder, Ya. Fu, F. Zou, V. Battaglia, A. Manthiram, M. Zhang, Y. Sh. Meng, J. Power Sources, 2020, 473, 228579; DOI: https://doi.org/10.1016/j.jpowsour.2020.228579.

    Article  CAS  Google Scholar 

  9. M. Freire, N. Kosova, C. Jordy, D. Chateigner, O. I. Lebedev, A. Maignan, V. Pralong, Nature Mater., 2016, 15, 173–177; DOI: https://doi.org/10.1038/nmat4479.

    Article  ADS  CAS  Google Scholar 

  10. S. Bourlot, P. Blanchard, S. Robert, J. Power Sources, 2011, 196, 6841; DOI: https://doi.org/10.1016/j.jpowsour.2010.09.103.

    Article  ADS  CAS  Google Scholar 

  11. L. Unterreiner, V. Jülch, S. Reith, Energy Proc., 2016, 99, 229; DOI: https://doi.org/10.1016/j.egypro.2016.10.113.

    Article  CAS  Google Scholar 

  12. D. Miranda, C. M. Costa, S. Lanceros-Mendez, J. Electroanal. Chem., 2015, 739, 97; DOI: https://doi.org/10.1016/j.jelechem.2014.12.010.

    Article  CAS  Google Scholar 

  13. Zh. J. Zhang, Premanand Ramadass, W. Fang, 18 — Safety of Lithium-Ion Batteries Lithium-Ion Batteries, Elsevier, 2014, 409; DOI: https://doi.org/10.1016/B978-0-444-59513-3.00018-2.

  14. Z. Li, D. Zhang, F. Yang, J. Mater. Sci., 2009, 44, 2435; DOI: https://doi.org/10.1007/s10853-009-3316-z.

    Article  ADS  CAS  Google Scholar 

  15. Y. Xu, Y. Dong, X. Han, X. Wang, Y. Wang, L. Jiao, H. Yuan, ACS Sust. Chem. Eng., 2015, 3, 2435; DOI: https://doi.org/10.1021/acssuschemeng.5b00455.

    Article  CAS  Google Scholar 

  16. M. Wang, Q. Tan, L. Liu, J. Li, J. Hazard. Mater., 2019, 380, 120846; DOI: https://doi.org/10.1016/j.jhazmat.2019.120846.

    Article  CAS  PubMed  Google Scholar 

  17. S. Sharma, A. Manthiram, Energy Environ. Sci., 2020, 13, 4087; DOI: https://doi.org/10.1039/d0ee02511a.

    Article  CAS  Google Scholar 

  18. Y. Miao, P. Hynan, A. von Jouanne, A. Yokochi, Energies, 2019, 12, 1074; DOI: https://doi.org/10.3390/en12061074.

    Article  CAS  Google Scholar 

  19. W.-J. Zhang, J. Power Sources, 2011, 196, 2962; DOI: https://doi.org/10.1016/j.jpowsour.2010.11.113.

    Article  ADS  CAS  Google Scholar 

  20. A. Eftekhari, J. Power Sources, 2017, 343, 395; DOI: https://doi.org/10.1016/j.jpowsour.2017.01.080.

    Article  ADS  CAS  Google Scholar 

  21. H. Zhang, Zh. Zou, Sh. Zhang, J. Liu, Sh. Zhong, Int. J. Electrochem. Sci., 2020, 15, 12041; DOI: https://doi.org/10.20964/2020.12.71.

    Article  CAS  Google Scholar 

  22. W. F. Howard, R. M. Spotnitz, J. Power Sources, 2007, 165, 887; DOI: https://doi.org/10.1016/j.jpowsour.2006.12.046.

    Article  ADS  CAS  Google Scholar 

  23. Y. Zhang, Q.-y. Huo, P.-p. Du, L.-zh. Wang, A.-q. Zhang, Y.-h. Song, Y. Lv, G.-y. Li, Synth. Metals, 2012, 162, 13–14, 1315 DOI: https://doi.org/10.1016/j.synthmet.2012.04.025.

    Google Scholar 

  24. P. M. Pratheeksha, E. H. Mohan, B. V. Sarada, M. Ramakrishna, K. Hembram, P. V. Venkata Srinivas, P. J. Daniel, T. N. Rao, S. Anandan, Phys. Chem. Chem. Phys., 2017, 19.1, 175; DOI: https://doi.org/10.1039/C6CP06923A.

    Article  Google Scholar 

  25. K. Naoi, K. Kisu, E. Iwama, S. Nakashima, Y. Sakai, Y. Orikasa, P. Leone, N. Dupré, T. Brousse, P. Rozier, W. Naoi, P. Simon, Energy Environ. Sci., 2016, 9, 2143; DOI: https://doi.org/10.1039/c6ee00829a.

    Article  CAS  Google Scholar 

  26. S. H. Ha, Y. J. Lee, Chem.-Eur. J., 2014, 21, 2132; DOI: https://doi.org/10.1002/chem.201404952.

    Article  PubMed  Google Scholar 

  27. C. Huang, T. Kuo, S. Yougbaré, L. Lin, J. Colloid Interface Sci., 2022, 607, 1457; DOI: https://doi.org/10.1016/j.jcis.2021.09.118.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Z. Li, J. Yang, T. Guang, B. Fan, K. Zhu, X. Wang, Small Methods, 2021, 5, 2100193; DOI: https://doi.org/10.1002/smtd.202100193.

    Article  CAS  Google Scholar 

  29. J. Xue, Z. Zhang, H. Guo, R. Liu, Y. Wang, L. Wen, G. Liang, Ionics, 2022, 28, 4229–4237; DOI: https://doi.org/10.1007/s11581-022-04632-1.

    Article  CAS  Google Scholar 

  30. D. Xu, X. Chu, Y. He, Z. Ding, B. Li, W. Han, H. Du, F. Kang, Electrochim. Acta, 2015, 152, 398; DOI: https://doi.org/10.1016/j.electacta.2014.11.025.

    Article  CAS  Google Scholar 

  31. C. Qiu, L. Liu, F. Du, X. Yang, C. Wang, G. Chen, Y. Wie, Chem. Res. Chin. Univ., 2015, 31, 270; DOI: https://doi.org/10.1007/s40242-015-4367-0.

    Article  CAS  Google Scholar 

  32. Y. Azizi, S. M. Sadrameli, Energy Conv. Manag., 2016, 128, 294; DOI: https://doi.org/10.1016/j.enconman.2016.09.081.

    Article  CAS  Google Scholar 

  33. F. Yu, J. Zhang, Y. Yang, G. Song, J. Power Sources, 2010, 195, 19, 6873; DOI: https://doi.org/10.1016/j.jpowsour.2010.01.042.

    Google Scholar 

  34. D. Jugović, D. Uskoković, J. Power Sources, 190, 2, 538; DOI: https://doi.org/10.1016/j.jpowsour.2009.01.074.

  35. Y. Zhang, Q. Huo, P. Du, L. Wang, A. Zhang, Y. Song, Y. Lv, G. Li, Synth. Metals, 2012, 162, 1315; DOI: https://doi.org/10.1016/j.synthmet.2012.04.025.

    Article  CAS  Google Scholar 

  36. T. V. S. L. Satyavani, A. Srinivas Kumar, P. S. V. Subba Rao, Eng. Sci. Technol. Int. J., 2016, 19, 178; DOI: https://doi.org/10.1016/j.jestch.2015.06.002.

    Google Scholar 

  37. D.-H. Seo, K.-Y. Park, H. Kim, S.-K. Jung, M.-S. Park, K. Kang, Adv. Energy Mater., 2018, 8, 1701408; DOI: https://doi.org/10.1002/aenm.201701408.

    Article  Google Scholar 

  38. D. Vernardou, Coatings, 2022, 12, 1543; DOI: https://doi.org/10.3390/coatings12101543.

    Article  CAS  Google Scholar 

  39. V. Sreeja, P. A. Joy, Mater. Res. Bull., 2007, 42, 1570; DOI: https://doi.org/10.1016/j.materresbull.2006.11.014.

    Article  CAS  Google Scholar 

  40. N. Bai, H. Chen, W. Zhou, K. Xiang, Y. Zhang, C. Li, H. Lu, Electrochim. Acta, 2015, 167, 172; DOI: https://doi.org/10.1016/j.electacta.2015.03.163.

    Article  CAS  Google Scholar 

  41. A. Kulka, K. Walczak, W. Zając, J. Molenda, J. Solid State Chem., 2017, 253, 367; DOI: https://doi.org/10.1016/j.jssc.2017.06.022.

    Article  ADS  CAS  Google Scholar 

  42. X. Pan, Y. Sun, S. Zhuang, G. Sun, S. Jiang, Y. Ren, Y. Wen, X. Li, F. Tu, Vacuum, 2023, 212, 112258; DOI: https://doi.org/10.1016/j.vacuum.2023.112258.

    Article  ADS  CAS  Google Scholar 

  43. G. Liu, S. Zhang, X. Wei, S. Wang, Y. Yu, Int. J. Electrochem. Sci., 2016, 11, 6799; DOI: https://doi.org/10.20964/2016.08.28.

    Article  CAS  Google Scholar 

  44. J. Cui, Y. Du, H. Xiao, Q. Yi, D. Du, Hydrometallurgy, 2014, 146, 169; DOI: https://doi.org/10.1016/j.hydromet.2014.03.012.

    Article  CAS  Google Scholar 

  45. O. Gileva, P. Aryal, S. Karki, H. Kim, Y. Kim, V. Milyutin, H. Park, K. Shin, J. Radioanal. Nucl. Chem., 2017, 314, 1695; DOI: https://doi.org/10.1007/s10967-017-5568-4.

    Article  CAS  Google Scholar 

  46. S. Sun, S. Wang, Y. Ye, B. Pan, Water Res., 2019, 153, 21; DOI: https://doi.org/10.1016/j.watres.2019.01.007.

    Article  CAS  PubMed  Google Scholar 

  47. V.N. Bulut, C. Duran, A. Gundogdu, M. Soylak, N. Yildirim, L. Elci, Talanta, 2008, 76, 469; DOI: https://doi.org/10.1016/j.talanta.2008.03.040.

    Article  CAS  PubMed  Google Scholar 

  48. L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, S. Maximovitch, Surface Coat. Technol., 2004, 185, 58; DOI: https://doi.org/10.1016/j.surfcoat.2003.10.061.

    Article  CAS  Google Scholar 

  49. L. Ying, L. Xia Wang, D. Lu, J. Sun, J. C. Sun, Key Eng. Mater., 2012, 519, 132; DOI: https://doi.org/10.4028/www.scientific.net/kem.519.132.

    Article  Google Scholar 

  50. I. Mahmud, DS. Kim, S. C. Ur, J. Korean Phys. Soc., 2016, 68, 1211; DOI: https://doi.org/10.3938/jkps.68.1211.

    Article  ADS  CAS  Google Scholar 

  51. L. Wu, X. Li, Z. Wang, L. Li, J. Zheng, H. Guo, Q. Hu, J. Fang, J. Power Sources, 2009, 189, 681; DOI: https://doi.org/10.1016/j.jpowsour.2008.08.097.

    Article  ADS  CAS  Google Scholar 

  52. F. Gao, Z. Tang, J. Xue, J. Univer. Sci. Technol. Beijing, Mineral, Metall., Mater., 2008, 15, 802; DOI: https://doi.org/10.1016/S1005-8850(08)60291-1.

    CAS  Google Scholar 

  53. R. Qi, Z. Xu, Y. Zhou, D. Zhang, Z. Sun, W. Chen, M. Xiong, Energy, 2021, 214, 118926; DOI: https://doi.org/10.1016/j.energy.2020.118926.

    Article  CAS  Google Scholar 

  54. J. Li, J. Wu, Y. Li, H. Zhao, T. Zhao, S. Ma, H. Liu, J. Taiwan Institute Chem. Eng., 2019, 99, 74; DOI: https://doi.org/10.1016/j.jtice.2019.03.002.

    Article  CAS  Google Scholar 

  55. B. Q. Zhu, X. H. Li, Z. X. Wang, H. J. Guo, Mater. Chem. Phys., 2006, 98, 373; DOI: https://doi.org/10.1016/j.matchemphys.2005.09.046.

    Article  CAS  Google Scholar 

  56. J. Li, Z.-F. Ma, Chemistry, 2019, 5, 3; DOI: https://doi.org/10.1016/j.chempr.2018.12.012.

    Article  ADS  CAS  Google Scholar 

  57. Z. Cao, B. Ma, C. Wang, B. Shi, Y. Chen, Hydrometallurgy, 2022, 212, 105896; DOI: https://doi.org/10.1016/j.hydromet.2022.105896.

    Article  CAS  Google Scholar 

  58. K. Kandori, T. Kuwae, T. Ishikawa, J. Colloid Interface Sci., 2006, 300, 225; DOI: https://doi.org/10.1016/j.jcis.2006.03.072.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Y. Lu, T. Zhang, Y. Liu, G. Luo, Chem. Eng. J., 2012, 210, 18; DOI: https://doi.org/10.1016/j.cej.2012.08.077.

    Article  CAS  Google Scholar 

  60. J. Thistleton, T.-A. Berry, P. Pearce, S.A. Parsons, Process Safety Environ. Protect., 2002, 80, 265; DOI: https://doi.org/10.1205/095758202762277623.

    Article  CAS  Google Scholar 

  61. W. Lou, Y. Zhang, Y. Zhang, S. Zheng, P. Sun, X. Wang, S. Qiao, J. Li, Y. Zhang, D. Liu, M. Wenzel, J. J. Weigand, J. Alloys Compd., 2021, 856, 158148; DOI: https://doi.org/10.1016/j.jallcom.2020.158148.

    Article  CAS  Google Scholar 

  62. C. Huang, D. Ai, L. Wang, X. He, Int. J. Electrochem. Sci., 2016, 11, 754–762. DOI: https://doi.org/10.1016/S1452-3981(23)15881-0.

    Article  ADS  CAS  Google Scholar 

  63. L. Wang, X. He, W. Sun, J. Wang, Y. Li, S. Fan, Nano Lett., 2012, 12, 5632; DOI: https://doi.org/10.1021/nl3027839.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Y. Zhu, S. Tang, H. Shi, H. Hu, Ceram. Inter., 2014, 40, 2685; DOI: https://doi.org/10.1016/j.ceramint.2013.10.055.

    Article  CAS  Google Scholar 

  65. X. Zhang, K. Zhou, D. Zeng, J. Li, Y. Wu, W. Chen, C. Peng, Bull. Environ. Contam. Toxicol., 2022, 109, 86; DOI: https://doi.org/10.1007/s00128-022-03472-z.

    Article  CAS  PubMed  Google Scholar 

  66. X. Zhang, K. Zhou, Q. Lei, Y. Huang, C. Peng, W. Chen, J. Miner., Metal. Mater. Soc., 2019, 71, 4608; DOI: https://doi.org/10.1007/s11837-019-03801-4.

    Article  CAS  Google Scholar 

  67. M. Balintova, A. Petrilakova, Chem. Eng. Trans., 2011, 25, 1–6; DOI: https://doi.org/10.3303/CET1125058.

    Google Scholar 

  68. C. Hsieh, I. L. Chen, W. Chen, J. Wang, Electrochim. Acta, 2012, 83, 202; DOI: https://doi.org/10.1016/j.electacta.2012.07.108.

    Article  CAS  Google Scholar 

  69. X.-X. Zhang, S.-S. Tang, M.-L. Chen, J.-H. Wang, J. Anal. At. Spectrom., 2012, 27, 466; DOI: https://doi.org/10.1039/C2JA10292G.

    Article  Google Scholar 

  70. Y. Song, H. H. Hahn, E. Hoffmann, Chemosphere, 2002, 48, 1029; DOI: https://doi.org/10.1016/S0045-6535(02)00183-2.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. T. Maqbool, P. Srikiratiwong, H. S. Fogler, Energy & Fuels, 2011, 25, 694; DOI: https://doi.org/10.1021/ef101112r.

    Article  CAS  Google Scholar 

  72. J. Wang, J. Li, Q. Wang, J. Wang, Z. Wang, C. T. Liu, Scripta Mater., 2019, 168, 19; DOI: https://doi.org/10.1016/j.scriptamat.2019.04.013.

    Article  CAS  Google Scholar 

  73. M. Covarrubias-Cervantes, S. Bongard, D. Champion, A. Voilley, LWT - Food Sci. Technol., 2005, 38, 371; DOI: https://doi.org/10.1016/j.lwt.2004.06.015.

    Article  CAS  Google Scholar 

  74. Y. Xiao, Z. Zhen, H. P. Wie, Adv. Mater. Res., 2014, 875–877, 95; DOI: https://doi.org/10.4028/www.scientific.net/amr.875-877.95.

    Google Scholar 

  75. L. Yang, Y. Feng, C. Wang, D. Fang, G. Yi, Z. Gao, P. Shao, C. Liu, X. Luo, S. Luo, Chem. Eng. J., 2022, 431, 1385; DOI: https://doi.org/10.1016/j.cej.2021.133232.

    Google Scholar 

  76. T. Roncal-Herrero, J. D. Rodríguez-Blanco, L. G. Benning, E. H. Oelkers, Cryst. Growth Design, 2009, 9, 5197; DOI: https://doi.org/10.1021/cg900654m.

    Article  CAS  Google Scholar 

  77. A. Dickson, J. Riley, Marine Chem., 1979, 7, 101–109; DOI: https://doi.org/10.1016/0304-4203(79)90002-1.

    Article  CAS  Google Scholar 

  78. C. Wang, Y. Xunlong, T. Huiyun, J. Shuofeng, M. Ziting, Z. Junjie, W. Xuewen, C. Dapeng, D. Yifan, Coatings, 2021, 11, 1137; DOI: https://doi.org/10.3390/coatings11091137.

    Article  CAS  Google Scholar 

  79. S. Deng, H. Wang, H. Liu, J. Liu, H. Yan, Nano-Micro Lett., 2014, 6, 209; DOI: https://doi.org/10.1007/BF03353785.

    Article  Google Scholar 

  80. S. B. Lee, S. H. Cho, S. J. Cho, G. J. Park, S. H. Park, Y. S. Lee, Electrochem. Commun., 2008, 10, 1219; DOI: https://doi.org/10.1016/j.elecom.2008.06.007.

    Article  CAS  Google Scholar 

  81. H. Li, L. Peng, D. B. Wu, J. Wu, Y.-J. Zhu, X. L. Hu, Adv. Energy Mater., 2019, 9, 1802930; DOI: https://doi.org/10.1002/aenm.201802930.

    Article  Google Scholar 

  82. H. Liu, P. Zhang, G. C. Li, Q. Wu, Y. P. Wu, J. Solid State Electrochem, 2008, 12, 1011; DOI: https://doi.org/10.1007/s10008-007-0478-y.

    Article  CAS  Google Scholar 

  83. Q. Fan, L. Lei, X. Xu, G. Yin, Y. Sun, J. Power Sources, 2014, 257, 65; DOI: https://doi.org/10.1016/j.jpowsour.2014.01.044.

    Article  ADS  CAS  Google Scholar 

  84. W. Peng, L. Jiao, H. Gao, Z. Qi, Q. Wang, H. Du, Y. Si, Y. Wang, H. Yuan, J. Power Sources, 2011, 196, Issue 5, 2841; DOI: https://doi.org/10.1016/j.jpowsour.2010.10.065.

    Article  ADS  CAS  Google Scholar 

  85. T. T. Zhan, W. F. Jiang, C. Li, X. D. Luo, G. Lin, Y. W. Li, S. H. Xiao, Electrochim. Acta, 2017, 246, 322; DOI: https://doi.org/10.1016/j.electacta.2017.05.151.

    Article  CAS  Google Scholar 

  86. G. Hu, X. Xie, Z. Peng, K. Du, Z. Gan, L. Xu, Y. Wang, Y. Cao, Solid State Ionics, 2019, 340, 115014; DOI: https://doi.org/10.1016/j.ssi.2019.115014.

    Article  CAS  Google Scholar 

  87. F. Yang, H. Zhang, Y. Shao, H. Song, S. Liao, J. Ren, Ceram. Inter., 2017, 43, 16652; DOI: https://doi.org/10.1016/j.ceramint.2017.09.055.

    Article  CAS  Google Scholar 

  88. A.T. Phan, A.E. Gheribi, P. Chartrand, Can. J. Chem. Eng., 2018, 97, 2224; DOI: https://doi.org/10.1002/cjce.23416.

    Article  Google Scholar 

  89. B. Chen, M. Liu, S. Cao, G. Chen, X. Guo, X. Wang, Mater. Chem. Phys., 2022, 279, 125750; DOI: https://doi.org/10.1016/j.matchemphys.2022.125750.

    Article  CAS  Google Scholar 

  90. C. W. Kim, J. S. Park, K. S. Lee, J. Power Sources, 2006, 163, 144; DOI: https://doi.org/10.1016/j.jpowsour.2006.02.071.

    Article  ADS  CAS  Google Scholar 

  91. L. Wang, Y. Huang, R. Jiang, D. Jia, Electrochim. Acta, 2007, 52, 6778; DOI: https://doi.org/10.1016/j.electacta.2007.04.104.

    Article  CAS  Google Scholar 

  92. S. Vedala, M. Sushama, Mat. Tod.:Proc., 2018, 5, 1649, DOI: https://doi.org/10.1016/j.matpr.2017.11.259.

    CAS  Google Scholar 

  93. Z. Liu, J. Li, Y. Xing, L. Wang, S. Fang, B. Xu, X. Qu, Ionics, 2014, 20, 1511; DOI: https://doi.org/10.1007/s11581-014-1110-7.

    Article  CAS  Google Scholar 

  94. Z. Q. Hu, D. X. Yang, K. J. Yin, J. X. Liu, F. Li, W. Y. Gao, Y. Qin, H. Liu, Adv. Mater. Res., 2013, 669, 311; DOI: https://doi.org/10.4028/www.scientific.net/amr.669.311.

    Article  Google Scholar 

  95. O. Toprakci, H. A. K. Toprakci, L. Ji, X. Zhang, KONA Powder and Particle J., 2010, 28, 50–73; DOI: https://doi.org/10.14356/kona.2010008.

    Article  CAS  Google Scholar 

  96. Y. E. Milián, N. Reinaga, M. Grágeda, S. Ushak, J. Sol-Gel Sci. Technol., 2020, 94, 22; DOI: https://doi.org/10.1007/s10971-019-05090-4.

    Article  Google Scholar 

  97. J. J. Ma, J. Zhou, X. M. Zu, X. Y. Wang, Adv. Mater. Res., 2015, 1120–1121, 128; DOI: https://doi.org/10.4028/www.scientific.net/amr.1120-1121.128.

    Article  Google Scholar 

  98. Z. Chen, H. Zhu, S. Ji, R. Fakir, V. Linkov, Solid State Ionics, 2008, 179, 1810; DOI: https://doi.org/10.1016/j.ssi.2008.04.018.

    Article  CAS  Google Scholar 

  99. M. M. Doeff, J. D. Wilcox, R. Kostecki, G. Lau, J. Power Sources, 2006, 163, 180; DOI: https://doi.org/10.1016/j.jpowsour.2005.11.075.

    Article  ADS  CAS  Google Scholar 

  100. F. Gao, Z. Tang, J. Xue, Electrochim. Acta, 2007, 53, 1939; DOI: https://doi.org/10.1016/j.electacta.2007.08.048.

    Article  CAS  Google Scholar 

  101. C.-Z. Lu, G. Ting-Kuo Fey, H.-M. Kao, J. Power Sources, 2009, 189, 155; DOI: https://doi.org/10.1016/j.jpowsour.2008.10.015.

    Article  ADS  CAS  Google Scholar 

  102. Y.-D. Cho, G. Ting-Kuo Fey, H.-M. Kao, J. Power Sources, 2009, 189, 256; DOI: https://doi.org/10.1016/j.jpowsour.2008.09.053.

    Article  ADS  CAS  Google Scholar 

  103. H. C. Shin, W. Cho, H. Jang, Electrochim. Acta, 2006, 52, 1472; DOI: https://doi.org/10.1016/j.electacta.2006.01.078.

    Article  CAS  Google Scholar 

  104. T. Wu, X. Ma, X. Liu, G. Zeng, W. Xiao, Mater. Technol., 2015, 30, A70; DOI: https://doi.org/10.1179/17535557A15Y.000000011.

    Article  ADS  CAS  Google Scholar 

  105. Y. Z. Dong, Y. M. Zhao, Y. H. Chen, Z. F. He, Q. Kuang, Mater. Chem. Phys., 2099, 115, 245; DOI: https://doi.org/10.1016/j.matchemphys.2008.11.063.

    Article  Google Scholar 

  106. L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang, J. Y. Cui, J. Power Sources, 2009, 189, 423; DOI: https://doi.org/10.1016/j.jpowsour.2008.07.032.

    Article  ADS  CAS  Google Scholar 

  107. G. Xie, H.-J. Zhu, X.-M. Liu, H. Yang, J. Alloys Compd., 2013, 574, 155; DOI: https://doi.org/10.1016/j.jallcom.2013.03.281.

    Article  CAS  Google Scholar 

  108. Y. Zhang, H. Shi, Q. Meng, Y. Yao, P. Dong, D. Wang, J. Duan, B. Xu, Ionics, 2020, 26, 4949; DOI: https://doi.org/10.1007/s11581-020-03664-9.

    Article  CAS  Google Scholar 

  109. C. Miao, P. Bai, Q. Jiang, S. Sun, X. Wang, J. Power Sources, 2014, 246, 232; DOI: https://doi.org/10.1016/j.jpowsour.2013.07.077.

    Article  ADS  CAS  Google Scholar 

  110. H. B. Gu, D. K. Jun, G. C. Park, B. Jin, E. M. Jin, J Nanosci. Nanotechnol., 2007, 7, 3980; DOI: https://doi.org/10.1166/jnn.2007.079.

    Article  CAS  PubMed  Google Scholar 

  111. X. Gao, G. Hu, Z. Peng, K. Du, Electrochim. Acta, 2009, 54, 4777; DOI: https://doi.org/10.1016/j.electacta.2008.12.024.

    Article  CAS  Google Scholar 

  112. S. W. Oh, S.-T. Myung, S.-M. Oh, C. S. Yoon, K. Amine, Y.-K. Sun, Electrochim. Acta, 2010, 55, 1193; DOI: https://doi.org/10.1016/j.electacta.2009.10.007.

    Article  CAS  Google Scholar 

  113. H.-M. Xie, R.-S. Wang, J.-R. Ying, L.-Y. Zhang, A. F. Jalbout, H.-Y. Yu, G.-L. Yang, X.-M. Pan, Z.-M. Su, Adv. Mater., 2006, 18, 2609; DOI: https://doi.org/10.1002/adma.200600578.

    Article  CAS  Google Scholar 

  114. J. Ying, C. Jiang, C. Wan, J. Power Sources, 2004, 129, 264; DOI: https://doi.org/10.1016/j.jpowsour.2003.10.007.

    Article  ADS  CAS  Google Scholar 

  115. J. Lim, V. Mathew, K. Kim, J. Moon, J. Kim, J. Electrochem. Soc., 2011, 158, A736. DOI: https://doi.org/10.1149/1.3581029.

    Article  CAS  Google Scholar 

  116. X. Wang, L. Wen, Y. Zheng, H. Liu, G. Liang, Ionics, 2019, 25, 4589; DOI: https://doi.org/10.1007/s11581-019-03025-1.

    Article  CAS  Google Scholar 

  117. C. Yan, K. Wu, P. Jing, H. Luo, Y. Zhang, Mater. Chem. Phys., 2022, 280, 125711; DOI: https://doi.org/10.1016/j.matchemphys.2022.125711.

    Article  CAS  Google Scholar 

  118. Y. Ma, T. Li, F. Jiang, Y. Jiang, F. Gao, L. Liu, Y. Wu, Y. Meng, X. Ma, Z. Zi, Int. J. Electrochem. Sci., 2022, 17, 220453; DOI: https://doi.org/10.20964/2022.04.32.

    Article  CAS  Google Scholar 

  119. J. Sun, Z. Li, X. Ren, L. Wang, G. Liang, J. Alloys Compd., 2019, 773, 788; DOI: https://doi.org/10.1016/j.jallcom.2018.09.215.

    Article  CAS  Google Scholar 

  120. L. Wu, S.-K. Zhong, J.-Q. Liu, F. Lv, K. Wan, Mater. Lett., 2012, 89, 32; DOI: https://doi.org/10.1016/j.matlet.2012.08.076.

    Article  CAS  Google Scholar 

  121. Z.-R. Chang, H.-J. Lv, H.-W. Tang, H.-J. Li, X.-Z. Yuan, H. Wang, Electrochim. Acta, 2009, 54, 4595; DOI: https://doi.org/10.1016/j.electacta.2009.03.063.

    Article  CAS  Google Scholar 

  122. L. Chen, Z. Chen, S. Liu, H. Zhang, Q. Huang, Int. J. Electrochem. Sci., 2018, 13, 5413; DOI: https://doi.org/10.20964/2018.06.21.

    Article  CAS  Google Scholar 

  123. X. Lou, Y. Zhang, J. Mater. Chem., 2011, 21, 4156; DOI: https://doi.org/10.1039/C0JM03331F.

    Article  CAS  Google Scholar 

  124. J. Qian, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Phys. Chem. C, 2010, 114, 3477; DOI: https://doi.org/10.1021/jp912102k.

    Article  CAS  Google Scholar 

  125. Y. Jin, X. Tang, H. Wang, RSC Adv., 2016, 6, 75602; DOI: https://doi.org/10.1039/C6RA13907H.

    Article  ADS  CAS  Google Scholar 

  126. J. Guo, L. Chen, X. Zhang, H. Chen, L. Tang, Mater. Lett., 2013, 106, 290; DOI: https://doi.org/10.1016/j.matlet.2013.05.044.

    Article  CAS  Google Scholar 

  127. R. Chen, Y. Wu, X. Y. Kong, J. Power Sources, 2014, 258, 246; DOI: https://doi.org/10.1016/j.jpowsour.2014.02.068.

    Article  ADS  CAS  Google Scholar 

  128. N. Bai, H. Chen, W. Zhou, K. Xiang, Y. Zhang, C. Li, H. Lu, Electrochim. Acta, 2015, 167, 172; DOI: https://doi.org/10.1016/j.electacta.2015.03.163.

    Article  CAS  Google Scholar 

  129. K. S. Park, K. T. Kang, S. B. Lee, G. Y. Kim, Y. J. Park, H. G. Kim, Mater. Res. Bull., 2004, 39, 1803; DOI: https://doi.org/10.1016/j.materresbull.2004.07.003.

    Article  CAS  Google Scholar 

  130. Y.-J. Wu, Y.-J. Gu, Y.-B. Chen, H.-Q. Liu, C.-Q. Liu, Inter. J. Hydrogen Energy, 2018, 43, 2050; DOI: https://doi.org/10.1016/j.ijhydene.2017.12.061.

    Article  CAS  Google Scholar 

  131. Y. Liu, C. Cao, Electrochim. Acta, 2010, 55, 4694; DOI: https://doi.org/10.1016/j.electacta.2010.03.033.

    Article  CAS  Google Scholar 

  132. J. Zheng, X. Li, Z. Wang, H. Guo, S. Zhou, J. Power Sources, 2008, 184, 574; DOI: https://doi.org/10.1016/j.jpowsour.2008.01.016.

    Article  ADS  CAS  Google Scholar 

  133. Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Electrochem. Commun., 2010, 12, 10; DOI: https://doi.org/10.1016/j.elecom.2009.10.023.

    Article  CAS  Google Scholar 

  134. R. Trócoli, J. Morales, J. Santos Peña, Solid State Ionics, 2014, 255, 30; DOI: https://doi.org/10.1016/j.ssi.2013.11.038.

    Article  Google Scholar 

  135. T. Zhang, D. Gong, S. Lin, J. Yu, Chem. Eng. J., 2022, 449, 137830; DOI: https://doi.org/10.1016/j.cej.2022.137830.

    Article  CAS  Google Scholar 

  136. A. H. Omidi, A. Babaei, A. Ataie, Mater. Res. Bull., 2020, 125, 110807; DOI: https://doi.org/10.1016/j.materresbull.2020.110807.

    Article  CAS  Google Scholar 

  137. Y. Wang, J. Zhang, S. Tian, J. Xue, L. Wen, G. Liang, Ionics, 2021, 27, 993; DOI: https://doi.org/10.1007/s11581-020-03881-2.

    Article  CAS  Google Scholar 

  138. X. Wang, L. Wen, Y. Zheng, X. Ren, Y. Li, G. Liang, Ionics, 2020, 26, 4433; DOI: https://doi.org/10.1007/s11581-020-03594-6.

    Article  CAS  Google Scholar 

  139. X. Yan, Y. Yang, C. Li, J. Liu, J. Wang, F. Xi, T. Wang, W. He, Ionics, 2022, 28, 1559; DOI: https://doi.org/10.1007/s11581-021-04430-1.

    Article  CAS  Google Scholar 

  140. S. Wang, H. Yang, L. Feng, S. Sun, J. Guo, Y. Yang, H. Wei, J. Power Sources, 2013, 233, 43; DOI: https://doi.org/10.1016/j.jpowsour.2013.01.124.

    Article  CAS  Google Scholar 

  141. D. Jugović, M. Mitrić, M. Kuzmanović, N. Cvjetićanin, S. Škapin, B. Cekić, V. Ivanovski, D. Uskoković, J. Power Sources, 2011, 196, 4613; DOI: https://doi.org/10.1016/j.jpowsour.2011.01.072.

    Article  ADS  Google Scholar 

  142. W. K. Zhang, H. J. Zeng, Y. Xia, L. C. Qian, B. Zhao, H. Huang, Y. P. Gan, X. Y. Tao, Adv. Mater. Res., 2011, 399–401, 1510; DOI: https://doi.org/10.4028/www.scientific.net/amr.399-401.1510.

    Google Scholar 

  143. X. Qin, G. Yang, F. Ma, F. Cai, Russ. J. Phys. Chem., 2016, 90, 233–239; DOI: https://doi.org/10.1134/S0036024415120304.

    Article  CAS  Google Scholar 

  144. Y. J. Gu, P. Liu, Y. B. Chen, H. Q. Liu, Y. M. Wang, F. X. Hao, Q. G. Zhang, S. Q. Li, Adv. Mater. Res., 2013, 643, 100; DOI: https://doi.org/10.4028/www.scientific.net/AMR.643.100.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 22-73-00246; https://rscf.ru/project/22-73-00246/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Babkin.

Ethics declarations

Animal Testing and Ethics

No human or animal subjects were used in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Dedicated to Academician of the Russian Academy of Sciences M. P. Egorov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, Vol. 73, No. 1, pp. 14–32, January, 2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babkin, A.V., Kubarkov, A.V., Styuf, E.A. et al. Preparation of battery-grade LiFePO4 by the precipitation method: a review of specific features. Russ Chem Bull 73, 14–32 (2024). https://doi.org/10.1007/s11172-024-4119-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-024-4119-8

Key word

Navigation