Skip to main content
Log in

Effect of FeSO4 purity on low temperature performance of LiFePO4/C

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4/C was prepared by employing coprecipitation method and carbothermal reduction method using FeSO4 with different purity as the iron source. The purity of FeSO4 has a great influence on the morphology of FePO4, but has little effect on the morphology of LiFePO4/C. The cycling performance decreases with the decrease of purity, and purity has a significant effect on the specific discharge capacities at low temperature. The specific discharge capacities of the five samples at − 20 °C and 0.5 C were 85.3, 74.2, 65.5, 60.4, and 50.1 mAh g−1, and the capacity retention rates were 53.3%, 47.1%, 42.9%, 38.7%, and 31.9%, respectively. Full battery low temperature performance test results validate the test results of coin cell. The Li+ diffusion coefficients are 4.53 × 10−13, 2.02× 10−13, 4.73 × 10−14, 2.34× 10−14, and 8.56 × 10−15 cm2 s−1, respectively. DLi+ is reduced two orders of magnitude with reduction of raw material purity. This is mainly because the low-purity FeSO4 contains a large amount of Ti, which enters the LiFePO4/C crystal lattice, causing the lattice distortion to block the lithium ion diffusion channel. Therefore, improving the purity of raw materials is an important method to improve the low temperature performance of LiFePO4/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu YM, Wang GH, Liu CZ, Chou SL, Zhu MY, Jin HM, Li WX, Li Y (2016) LiFePO4/C nanocomposite synthesized by a novel carbothermal reduction method and its electrochemical performance. Ceram Int 42:11422–11428

    Article  CAS  Google Scholar 

  2. Yuan H, Wang XY, Wu Q, Shu HB, Yang XK (2016) Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C. J Alloys Compd 675:187–194

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Challenges for rechargeable batteries. J Power Sources 22:587–603

    CAS  Google Scholar 

  4. Delmas C, Maccario M, Croguennec L, Cras FL, Weil LF (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat Mater 7:665–671

    Article  CAS  Google Scholar 

  5. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  CAS  Google Scholar 

  6. Wang L, Liang GC, Ou XQ, Zhi XK, Zhang JP, Cui JY (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189:423–428

    Article  CAS  Google Scholar 

  7. Zhang SS, Xu K, Jow TR (2003) The low temperature performance of Li-ion batteries. J Power Sources 115:137–140

    Article  CAS  Google Scholar 

  8. Zhang H, Xu Y, Zhao C, Yang X, Jiang Q (2012) Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material. Electrochim Acta 83:341–347

    Article  CAS  Google Scholar 

  9. Zhao GY, Wei ZH, Zhang NQ, Sun KN (2012) Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes. Mater Lett 89:243–246

    Article  CAS  Google Scholar 

  10. Smart MC, Ratnakumar BV, Surampudi S (1999) Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates. J Electrochem Soc 146:486–492

    Article  CAS  Google Scholar 

  11. Li CL, Zhao YY, Zhang HM, Liu JL, Jing J, Cui XL, Li SY (2013) Compatibility between LiNi0.5Mn1.5O4 and electrolyte based upon lithium bis(oxalate)borate and sulfolane for high voltage lithium-ion batteries. Electrochim Acta 104:134–139

    Article  CAS  Google Scholar 

  12. Rui XH, Jin Y, Feng XY, Zhang LC, Chen CH (2011) A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J Power Sources 196:2109–2114

    Article  CAS  Google Scholar 

  13. Liao XZ, Ma ZF, Gong Q, He YS, Pei L, Zeng LJ (2008) Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochem Commun 10:691–694

    Article  CAS  Google Scholar 

  14. Zhang SS, Xu K, Jow TR (2006) An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J Power Sources 159:702–707

    Article  CAS  Google Scholar 

  15. Smart MC, Ratnakumar BV, Surampudi S (1999) Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. J Electrochem Soc 146:3963–3969

    Article  CAS  Google Scholar 

  16. Lin HP, Chua D, Salomon M (2001) Low-temperature behavior of Li-ion cells. Electrochem Solid-State Lett 4:A71–A73

    Article  CAS  Google Scholar 

  17. Kim HS, Cho BW, Cho WI (2004) Cycling performance of LiFePO4 cathode material for lithium secondary batteries. J Power Sources 132:235–239

    Article  CAS  Google Scholar 

  18. Huang CK, Sakamoto JS, Wolfenstine J (2000) The limits of low-temperature performance of Li-ion cells. J Electrochem Soc 147:2893–2896

    Article  CAS  Google Scholar 

  19. Chang W, Kim SJ, Park IT, Cho BW, Chung KY, Shin HC (2013) Low temperature performance of LiFePO4 cathode material for Li-ion batteries. J Alloys Compd 563:249–253

    Article  CAS  Google Scholar 

  20. Franger S, Benoit C, Bourbon C, Le Cras F (2006) Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries. J Phys Chem Solids 67:1338–1342

    Article  CAS  Google Scholar 

  21. Amin R, Balaya P, Maier J (2007) Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochem Solid-State Lett 10:A13–A16

    Article  CAS  Google Scholar 

  22. Li CF, Hua N, Wang CY, Kang XY, Wumair T, Han Y (2011) Effect of Mn2+ doping in LiFePO4 and the low temperature electrochemical performances. J Alloys Compd 509:1897–1900

    Article  CAS  Google Scholar 

  23. Yang X, Xu YL, Zhang H, Huang YA, Jiang Q, Zhao CJ (2013) Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen black nanocomposite cathode materials. Electrochim Acta 114:259–264

    Article  CAS  Google Scholar 

  24. Yao JW, Wu F, Qiu XP, Li N, Su YF (2011) Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochim Acta 56:5587–5592

    Article  CAS  Google Scholar 

  25. Pang LJ, Zhao MS, Zhao X, Chai YJ (2012) Preparation and electrochemical performance of Cd-doped LiFePO4/C composites. J Power Sources 201:253–258

    Article  CAS  Google Scholar 

  26. Mi YY, Yang CK, Zuo ZC, Qi LY, Tang CX, Zhang WD, Zhou HH (2015) Positive effect of minor manganese doping on the electrochemical performance of LiFePO4/C under conditions. Electrochim Acta 176:642–648

    Article  CAS  Google Scholar 

  27. Tang H, Xu J (2013) Enhance electrochemical performance of LiFePO4 coated with Li0.34La0.51TiO2.94 by rheological phase reaction method. Mater Sci Eng B 178:1503–1508

    Article  CAS  Google Scholar 

  28. Huang YG, Xu YL, Yang X (2013) Enhanced electrochemical performances of LiFePO4/C co-doping with magnesium and fluorine. Electrochim Acta 113:156–163

    Article  CAS  Google Scholar 

  29. Wang YQ, Liu ZP, Zhou SM (2011) An effective method for preparing uniform carbon coated nano-sized LiFePO4 particles. Electrochim Acta 58:359–363

    Article  CAS  Google Scholar 

  30. Kuwahara A, Suzuki S, Miyayama M (2010) Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties. J Electroceram 24:69–75

    Article  CAS  Google Scholar 

  31. Zhao NN, Li YS, Zhao XX, Zhi XK, Liang GC (2016) Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J Alloys Compd 683:123–132

    Article  CAS  Google Scholar 

  32. Yao B, Ding ZJ, Zhang JX, Feng XY, Yin LW (2014) Encapsulation of LiFePO4 by in-situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium ion batteries. J Solid State Chem 216:9–12

    Article  CAS  Google Scholar 

  33. Cai GL, Guo RS, Liu L, Yang YX, Zhang C, Wu C, Guo WN, Jiang H (2015) Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2. J Power Sources 288:136–144

    Article  CAS  Google Scholar 

  34. Ue M, Mori S (1995) Mobility and ionic association of lithium salts in a propylene carbonate-ethyl methyl carbonate mixed solvent. J Electrochem Soc 142:2577–2581

    Article  CAS  Google Scholar 

  35. Ein-Eli Y, Thomas SR, Koch V (1996) Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries. J Electrochem Soc 143:L273–L277

    Article  CAS  Google Scholar 

  36. Li SY, Li XP, Liu JL, Shang ZC, Cui XL (2015) A low-temperature electrolyte for lithium-ion batteries. Ionics 21:901–907

    Article  CAS  Google Scholar 

  37. Xie D, Cai GL, Liu ZC, Guo RS, Sun DD, Zhang C, Wan YZ, Peng JH, Jiang H (2016) The low temperature electrochemical performances of LiFePO4/C/ graphene nanofiber with 3D-bridge network structure. Electrochim Acta 217:62–72

    Article  CAS  Google Scholar 

  38. Wu G, Liu N, Gao XG, Tian XH, Zhu YB, Zhou YK, Zhu QY (2018) A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life. Appl Surf Sci 435:1329–1336

    Article  CAS  Google Scholar 

  39. Kim S, Mathew V, Kang J, Gim J, Song J, Jo J, Kim J (2016) High rate capability of LiFePO4 cathodes doped with an excess amount of Ti. Ceram Int 42:7230–7236

    Article  CAS  Google Scholar 

  40. Tu JG, Wu K, Tang H, Zhou HH, Jiao SQ (2017) Mg-Ti co-doping behavior of porous LiFePO4 microspheres for high-rate lithium-ion batteries. J Mater Chem A 5:17021–17028

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (grant number 51808217) and the Tianjin Technical Expert Project (grant number 19JCTPJC43900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Wang or Guangchuan Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wen, L., Zheng, Y. et al. Effect of FeSO4 purity on low temperature performance of LiFePO4/C. Ionics 26, 4433–4442 (2020). https://doi.org/10.1007/s11581-020-03594-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03594-6

Keywords

Navigation