Skip to main content
Log in

Investigation of the molybdenum oxide purification for the AMoRE experiment

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The presented study reports on the purification of molybdenum oxide, which is one of the important tasks of the Advanced Mo based Rare process Experiment in searching for the neutrinoless double beta (0νββ) decay of 100Mo. Purified MoO3 powder is used as initial material for further growth of radiopure monocrystals. As purification technique, double sublimation, co-precipitation with calcium chloride carrier, and precipitation of polyammonium molybdate from acidic media were used. Concentrations of impurities like Sr, Ba, Pb, Th and U were measured by ICP-MS and radioactive isotopes were checked by a HPGe detector at the YangYang underground Laboratory in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fukuda S et al (2001) Solar 8B and Hep neutrino measurements from 1258 days of super-kamiokande data. Phys Rev Lett 86(25):5651–5655

    Article  CAS  Google Scholar 

  2. Mohapatra RN (2007) Theory of neutrinos: a white paper. Rep Prog Phys. doi:10.1088/0034-4885/70/11/R02

    Google Scholar 

  3. Giuliani A, Poves A (2012) Neutrinoless double-beta decay. Adv High Energy Phys. doi:10.1155/2012/857016

    Google Scholar 

  4. Gando A et al (2016) Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys Rev Lett. doi:10.1103/PhysRevLett.117.082503

    Google Scholar 

  5. Abgrall N et al (2014) The Majorana demonstrator neutrinoless double-beta decay experiment. Adv High Energy Phys. doi:10.1155/2014/365432

    Google Scholar 

  6. Alduino C et al (2017) CUORE sensitivity to 0νββ decay. Eur Phys J C. doi:10.1140/epjc/s10052-017-5098-9

    Google Scholar 

  7. Arnold R et al (2015) Result of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment. Phys Rev D. doi:10.1103/PhysRevD.92.072011

    Google Scholar 

  8. Alenkov V et al (2015) Technical design report for the AMoRE 0νββ decay search experiment. https://arxiv.org/pdf/1512.05957.pdf. Accessed 5 Sep 2017

  9. Rahaman S (2008) Q values of the 76Ge and 100Mo double-beta decays. Phys Lett B. doi:10.1016/j.physletb.2008.02.047

    Google Scholar 

  10. Meija J et al (2013) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem. doi:10.1515/pac-2015-0503

    Google Scholar 

  11. Alenkov VV (2013) Ultrapurification of isotopically enriched materials for 40Ca100MoO4 crystal growth. Inorg Mater. doi:10.1134/S0020168513120029

    Google Scholar 

  12. Firestone RB (1996) Table of isotopes, 8th edn. Wiley, New York

    Google Scholar 

  13. Shlegel VN, Berge L, Boiko RS (2014) Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program. EPJ Web Conf. doi:10.1051/epjconf/20136503001

    Google Scholar 

  14. Shubin A, Kulinich Yu, Skorynin G et al (2006) Gas centrifuges in the production of high-purity volatile substances. In: Proc. XI Int Sci Conf physicochemical process in the selection of atoms and molecules and in laser, plasma, and nanotechologies, TsNIIATOMINFORM, Zvenigorod (Rus)

  15. Somorjai G-A (1968) Mechanism of Sublimation. Science 162:755–760

    Article  CAS  Google Scholar 

  16. Clarence D, Chiola V (1968) Process for purifying molybdenum trioxide. Patent no. US3393971 A. Patented 23 Jul 1968

  17. Lu WA, Zhang GH, Jie DA, Chou KC (2015) Oxidation roasting of molybdenite concentrate. Trans Nonferr Met Soc. doi:10.1016/S1003-6326(15)64067-5

    Google Scholar 

  18. Kirby HW, Salutsky Murrell L (1964) NAS-NS 3057 the radiochemistry of radium. National Academy of Sciences - National Research Council. Nuclear Science Series

  19. Scadden EM, Ballou NE (1960) NAS-NS 3009 the radiochemistry of molybdenum. National Academy of Sciences - National Research Council. Nuclear Science Series

  20. Kujirai O, Yamada K, Fresenius KM (1991) Simultaneous determination of traces of impurities in high-purity molybdenum and molybdenum trioxide by coprecipitation and inductively coupled plasma-atomic emission spectrometry. J Anal Chem. doi:10.1007/BF00324398

    Google Scholar 

  21. Mogi F, Itoh K, Okamoto N, Narita M, Fujine M (1988) Determination of trace impurities in high-purity molybdenum and tungsten. Denki Seiko 59:263–270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.S. Choi and D. S. Leonard for ICP-MS measurements, and W.G. Kang and G.W. Kim for the HPGe measurements. This research was funded by the Institute for Basic Science (Korea) under project code IBS-R016-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HyangKyu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gileva, O., Aryal, P., Karki, S. et al. Investigation of the molybdenum oxide purification for the AMoRE experiment. J Radioanal Nucl Chem 314, 1695–1700 (2017). https://doi.org/10.1007/s10967-017-5568-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5568-4

Keywords

Navigation