Skip to main content
Log in

Facile synthesis and electrochemical performance of LiFePO4/C based on modified ferrous phosphate microspheres

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper reported a novel approach to synthesize the uniform carbon-coated LiFePO4/C with PAM composite micro-spherical ferrous phosphate which was produced by the co-precipitation method as the precursor. The addition of PAM effectively controlled the ferrous phosphate primary particle size around 200 nm, and the corresponding LiFePO4/C particle size has also been restricted which effectively shortens the transport distance of lithium ions. In addition, the resulting PAM-embedded ferrous phosphate precursor gave high conductivity of LiFePO4/C, and more carbon residue leads to better rate performance. The LiFePO4-PAM sample demonstrated excellent electrochemical performance of initial discharge capacities at 0.2, 0.5, 1, 2, and 5C are 163.3, 160.5, 155.3, 146.2, and 126.3 mAh g-1, respectively. Furthermore, the initial charge and discharge capacity of synthesized LiFePO4 with different PAM addition amounts was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Paolella A, Bertonib G, Hovington P, Feng Z, Flacau R, Prato M, Colombo M, Marras S, Manna L, Turner S, Tendeloo GV, Guerfi A, Demopoulos GP, Zaghib K (2015) Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy 16:256–267

    Article  CAS  Google Scholar 

  3. Sun J, Li Z, Ren X, Wang L, Liang G (2019) High volumetric energy density of LiFePO4/C microspheres based on xylitol-polyvinyl alcohol complex carbon sources. J Alloys Compd 773:788–795

    Article  CAS  Google Scholar 

  4. Wang P, Zhang G, Li Z, Sheng W, Zhang Y, Gu J, Zheng X, Cao F (2016) Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources. ACS Appl Mater Interfaces 8:26908–26915

    Article  CAS  PubMed  Google Scholar 

  5. Ilango P, Gnanamuthu R, Jo Y, Lee C (2016) Design and electrochemical investigation of a novel graphene oxide-silver joint conductive agent on LiFePO4 cathodes in rechargeable lithium-ion batteries. J Ind Eng Chem 36:121–124

    Article  CAS  Google Scholar 

  6. Johnson ID, Lubke M, Wu OY, Makwana NM, Smales GJ, Islam HU, Dedigama RY, Gruar RI, Tighe CJ, Scanlon DO, Cora F, Brett DJL, Shearing PR, Darr JA (2016) Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J Power Sources 302:410–418

    Article  CAS  Google Scholar 

  7. Wang X, Feng Z, Huang J, Deng W, Li X, Zhang H, Wen Z (2018) Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon 127:149–157

    Article  CAS  Google Scholar 

  8. He R, Liu Z, Zhang L, Guo R, Yang S (2016) Electrochemical properties of Vand Ti co-doping Li1.02FePO4/C material prepared by solid-state synthesis route. J Alloys Compd 662:461–466

    Article  CAS  Google Scholar 

  9. Naik A, Zhou J, Gao C, Liu GZ, Wang L (2016) Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex. J Energy Inst 89:21–29

    Article  CAS  Google Scholar 

  10. Zhang C, Liang Y, Yao L, Qiu Y (2015) Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries. J Alloys Compd 627:91–100

    Article  CAS  Google Scholar 

  11. Wang B, Liu A, Al Abdulla W, Wang D, Zhao X (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7:8819–8828

    Article  CAS  PubMed  Google Scholar 

  12. Oh SW, Myung ST, Oh SM, Oh KH, Amine K, Scrosati B, Sun YK (2010) Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv Mater 22:4842–4845

    Article  CAS  PubMed  Google Scholar 

  13. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13

    Article  CAS  Google Scholar 

  14. Zhang Y, Park SJ (2018) Bimetallic AuPd alloy nanoparticles deposited on MoO3 nanowires for enhanced visible-light driven trichloroethylene degradation. J Catal 361:238–247

    Article  CAS  Google Scholar 

  15. Zhang Y, Park SJ (2017) Au-pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 355:1–10

    Article  CAS  Google Scholar 

  16. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    Article  CAS  Google Scholar 

  17. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5:5163–5185

    Article  CAS  Google Scholar 

  18. Seid KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon-LiFePO4 nanocomposites. J Mater Chem 22:24057–24066

    Article  CAS  Google Scholar 

  19. Cao YL, Yu LH, Li T, Ai XP, Yang HX (2007) Synthesis and electrochemical characterization of carbon-coated nanocrystalline LiFePO4 prepared by polyacrylates-pyrolysis route. J Power Sources 172:913–918

    Article  CAS  Google Scholar 

  20. Ding YH, Huang GL, Li HH, Xie HM, Sun HZ, Zhang JP (2015) Double carbon nano coating of LiFePO4 cathode material for high performance of lithium ion batteries. J Nanosci Nanotechnol 15:9630–9635

    Article  CAS  PubMed  Google Scholar 

  21. Yang X, Mou F, Zhang L, Peng G, Dai Z, Wen ZY (2012) Enhanced rate performance of two-phase carbon coated LiFePO4/(C + G) using natural graphite as carbon source. J Power Sources 204:182–186

    Article  CAS  Google Scholar 

  22. Fan C, Li Q, Chen S, Fan J, Wen Z, Zeng T, Zhang X, Han S (2016) Poly(vinylpylrrolidone) as Surfactant in the sol-gel preparation of lithium iron phosphate/carbon cathodes for lithium-ion batteries. Energy Technol 4:1–8

    Article  CAS  Google Scholar 

  23. Liu X, Feng T, Chen S, Wei H (2016) Effects of different templates on electrochemical performance of LiFePO4/C prepared by supercritical hydrothermal method. Int J Electrochem Sci 11:2276–2283

    CAS  Google Scholar 

  24. Zou B, Wang Y, Zhou S (2013) Spray drying-assisted synthesis of LiFePO4/C composite microspheres with high performance for lithium-ion batteries. Mater Lett 92:300–303

    Article  CAS  Google Scholar 

  25. Sun J, Ren X, Li Z, Wang L, Liang G (2019) Synthesis and electrochemical performance of LiFePO4/C composite based on xylitol-polyvinyl alcohol complex carbon sources. Ionics 25:1567–1575

    Article  CAS  Google Scholar 

  26. Zhi XK, Liang GC, Ou XQ, Zhang SX, Wang L (2017) Synthesis and electrochemical performance of LiFePO4/C composite by improved solid-state method using a complex carbon source. J Electrochem Soc 164:A1285–A1290

    Article  CAS  Google Scholar 

  27. Gong C, Deng F, Tsui C, Xue Z, Ye Y, Tang C, Zhou X, Xie X (2014) PANI-PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries. J Mater Chem A 2:19315–19323

    Article  CAS  Google Scholar 

  28. Dhindsa KS, Kumar A, Nazri GA, Naik VM, Garg VK, Oliveira AC, Vaishnava PP, Zhou ZX, Naik R (2016) Enhanced electrochemical performance of LiFePO4/C nanocomposites due to in situ formation of Fe2P impurities. J Solid State Electrochem Vol 20:2275–2282

    Article  CAS  Google Scholar 

  29. Chen M, Du C, Song B, Xiong K, Yin G, Zuo P (2013) X, Cheng, High-performance LiFePO4 cathode material from FePO4 microspheres with carbon nanotube networks embedded for lithium ion batteries. J Power Sources 223:100–106

    Article  CAS  Google Scholar 

  30. Guo J, Wang Y, Zhao M (2018) 3D flower-like ferrous (II) phosphate nanostructures as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose at nanomolar level. Talanta 182:230–240

    Article  CAS  PubMed  Google Scholar 

  31. Ren JX, Hu YK, Guo XD, Yang T, Zhong BH, Liu H (2014) Vacuum-assisted synthesis of Fe3(PO4)2·8H2O and its influence on structure, morphology and electrochemical performance of LiFePO4/C. Acta Phys -Chim Sin 30:866–872

    Article  CAS  Google Scholar 

  32. Oh S, Huang Z, Zhang B, Yu Y, He Y, Kim J (2012) Low temperature synthesis of graphene- wrapped LiFePO4 nanorod cathodes by the polyol method. J Mater Chem 22:17215–17221

    Article  CAS  Google Scholar 

  33. Chen C, Liu G, Wang Y, Li J, Liu H (2013) Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4·2H2O nanoparticles by introduction of Fe3(PO4)2·8H2O at low cost. J Electrochim Acta 113:464–469

    Article  CAS  Google Scholar 

  34. Qin XZ, Yang G, Gao J, Cai FP, Tian CH (2016) LiFePO4/C Cathode material modified by polyacrylamide. J Inorg Mater 31:517–522

    Article  CAS  Google Scholar 

  35. Yang ST, Zhao NH, Dong HY, Yue HY, Yang JX (2005) PAM templating mechanism for synthesis of a novel LiFePO4 cathode material. Chem Res Chin Univ 21:309–314

    CAS  Google Scholar 

  36. Yousefi SA, Nasser MS, Hussein IA, Benamor A (2020) Enhancement of flocculation and dewaterability of a highly stable activated sludge using a hybrid system of organic coagulants and polyelectrolytes. J Water Process Eng 35:101237

    Article  Google Scholar 

  37. Vollebregt S, Ishihara R, Tichelaar FD, Hou Y, Beenakker CIM (2012) Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers. Carbon 50:3542–3554

    Article  CAS  Google Scholar 

  38. Ding RQ, Liu H, Wang L, Liang GC (2019) Effect of spray drying technological conditions on the performance of LiFePO4/C cathode materials with high energy density. Ionics 25:5633–5642

    Article  CAS  Google Scholar 

  39. Rui XH, Jin Y, Feng XY, Zhang LC, Chen CH (2011) A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J Power Sources 196:2109–2114

    Article  CAS  Google Scholar 

  40. Wang XY, Wen LZ, Zheng Y, Liu H, Liang GC (2019) Facile synthesis and electrochemical properties of high tap density LiFePO4/C. Ionics 25:4589–4596

    Article  CAS  Google Scholar 

  41. Liu Y, Zhang J, Li Y, Hu Y, Li W, Zhu M, Hu P, Chou S, Wang G (2017) Solvothermal synthesis of a hollow micro-sphere LiFePO4/C composite with a porous interior structure as a cathode material for lithium ion batteries. Nanomaterials 7:368

    Article  PubMed Central  Google Scholar 

  42. Bao L, Li L, Xu G, Wang J, Zhao R, Shen G, Han G, Zhou S (2016) Olivine LiFePO4 nano-crystallites embedded in carbon-coating matrix for high power Li-ion batteries. Electrochim Acta 222:685–692

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Tianjin Technical Expert Project (grant number 19JCTPJC43900) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangchuan Liang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Tian, S. et al. Facile synthesis and electrochemical performance of LiFePO4/C based on modified ferrous phosphate microspheres. Ionics 27, 993–1002 (2021). https://doi.org/10.1007/s11581-020-03881-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03881-2

Keywords

Navigation