Skip to main content
Log in

Finite-time command-filtered approximation-free attitude tracking control of rigid spacecraft

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a finite-time command-filtered approximation-free attitude tracking control strategy is proposed for rigid spacecraft. A novel finite-time prescribed performance function is first constructed to ensure that the attitude tracking errors converge to the predefined region in finite time. Then, a finite-time error compensation mechanism is constructed and incorporated into the backstepping control design, such that the differentiation of virtual control signals in recursive steps can be avoided to overcome the singularity issue. Compared with most of approximation-based attitude control methods, less computational burden and lower complexity are guaranteed by the proposed approximation-free control scheme due to the avoidance of using any function approximations. Simulations are given to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available as the data also form part of an ongoing study, but are available from the corresponding author on reasonable request.

References

  1. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  2. Chen, Z., Huang, J.: Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control. IEEE Trans. Autom. Control 54(3), 600–605 (2009)

    Article  MathSciNet  Google Scholar 

  3. Hu, Q., Xiao, B.: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64(1), 13–23 (2011)

    Article  MathSciNet  Google Scholar 

  4. Shen, Q., Wang, D., Zhu, S., Poh, E.K.: Robust control allocation for spacecraft attitude tracking under actuator faults. IEEE Trans. Control Syst. Technol. 25(3), 1068–1075 (2016)

    Article  Google Scholar 

  5. Wang, C., Guo, L., Wen, C., Hu, Q., Qiao, J.: Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Trans. Industr. Electron. 67(3), 2241–2250 (2020)

    Article  Google Scholar 

  6. Wu, S., Wen, S.: Robust \({H}_\infty \) output feedback control for attitude stabilization of a flexible spacecraft. Nonlinear Dyn. 84(1), 405–412 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ding, S., Zheng, W.X.: Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1163–1181 (2014)

    Article  Google Scholar 

  8. Sun, M.: Two-phase attractors for finite-duration consensus of multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 50(5), 1757–1765 (2020)

    Article  Google Scholar 

  9. Ding, S., Mei, K., Yu, X.: Adaptive second-order sliding mode control: a lyapunov approach. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3115447. (to be publised)

    Article  Google Scholar 

  10. Zou, A.-M., Kumar, K.D., de Ruiter, A.H.: Finite-time spacecraft attitude control under input magnitude and rate saturation. Nonlinear Dyn. 99(3), 2201–2217 (2020)

    Article  Google Scholar 

  11. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zhao, L., Yu, J., Yu, H.: Adaptive finite-time attitude tracking control for spacecraft with disturbances. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1297–1305 (2018)

    Article  Google Scholar 

  13. Zhang, J., Zhao, W., Shen, G., Xia, Y.: Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Trans. Syst. Man Cybern. 51(11), 6606–6613 (2021)

    Article  Google Scholar 

  14. Chen, Q., Shi, H., Sun, M.: Echo state network-based backstepping adaptive iterative learning control for strict-feedback systems: An error-tracking approach. IEEE Trans. Cybern. 50(7), 3009–3022 (2020)

    Article  Google Scholar 

  15. Ding, S., Zhang, B., Mei, K., Park, J.H.: Adaptive fuzzy SOSM controller design with output constraints. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3079506. (to be published)

    Article  Google Scholar 

  16. Na, J., He, H., Huang, Y., Dong, R.: Adaptive estimation of asymmetric dead-zone parameters for sandwich systems. IEEE Trans. Control Syst. Tech. (2021). https://doi.org/10.1109/TCST.2021.3104756. (to be published)

    Article  Google Scholar 

  17. Zhou, X., Gao, C., Li, Z., Ouyang, X., Wu, L.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103(2), 1645–1661 (2021)

    Article  Google Scholar 

  18. Xie, S., Chen, Q.: Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts. IEEE Trans. Circuits Syst. II Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3078708. (to be published)

    Article  Google Scholar 

  19. Chen, Q., Tao, M., He, X., Tao, L.: Fuzzy adaptive nonsingular fixed-time attitude tracking control of quadrotor UAVs. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2864–2877 (2021)

    Article  Google Scholar 

  20. Zou, A.M., Kumar, K.D., Hou, Z.G., Liu, X.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE Trans. Syst. Man Cybern. 41(4), 950–63 (2011)

    Article  Google Scholar 

  21. Huo, B., Xia, Y., Lu, K., Fu, M.: Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft. J. Franklin Inst. 352(10), 4225–4246 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wang, S.: Asymptotic tracking control for nonaffine systems with disturbances. IEEE Trans. Circuits Syst. II. Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3080524. (to be published)

    Article  Google Scholar 

  23. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    Article  MathSciNet  Google Scholar 

  24. Chen, M., Liu, X., Wang, H.: Adaptive robust fault-tolerant control for nonlinear systems with prescribed performance. Nonlinear Dyn. 81(4), 1727–1739 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, S., Na, J., Chen, Q.: Adaptive predefined performance sliding mode control of motor driving systems with disturbances. IEEE Trans. Energy Convers. 36(3), 1931–1939 (2021)

    Article  Google Scholar 

  26. Zhang, L., Yang, G.-H.: Adaptive fuzzy prescribed performance control of nonlinear systems with hysteretic actuator nonlinearity and faults. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2349–2358 (2018)

    Article  Google Scholar 

  27. Zhang, C., Ma, G., Sun, Y., Li, C.: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression. Nonlinear Dyn. 96(3), 1909–1926 (2019)

    Article  Google Scholar 

  28. Hu, Q., Jiang, B.: Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1082–1092 (2018)

    Article  MathSciNet  Google Scholar 

  29. Sui, S., Chen, C.P., Tong, S.: A novel adaptive nn prescribed performance control for stochastic nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 3196–3205 (2021)

    Article  MathSciNet  Google Scholar 

  30. Liu, Y., Liu, X., Jing, Y., Zhang, Z.: A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(4), 646–658 (2019)

    Article  Google Scholar 

  31. Xie, S., Tao, M., Chen, Q., Tao, L.: Neural-network-based adaptive finite-time output constraint control for rigid spacecrafts. Int. J. Robust Nonlinear Control (2021). https://doi.org/10.1002/rnc.5766. (to be published)

    Article  Google Scholar 

  32. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014)

    Article  MathSciNet  Google Scholar 

  33. Choi, Y.H., Yoo, S.J.: Decentralized approximation-free control for uncertain large-scale pure-feedback systems with unknown time-delayed nonlinearities and control directions. Nonlinear Dyn. 85(2), 1053–1066 (2016)

    Article  MathSciNet  Google Scholar 

  34. Huang, Y., Na, J., Wu, X., Gao, G.: Approximation-free control for vehicle active suspensions with hydraulic actuator. IEEE Trans. Industr. Electron. 65(9), 7258–7267 (2018)

    Article  Google Scholar 

  35. Zhang, C., Na, J., Wu, J., Chen, Q., Huang, Y.: Proportional-integral approximation-free control of robotic systems with unknown dynamics. IEEE/ASME Trans. Mechatron. 26(4), 2226–2236 (2021)

    Article  Google Scholar 

  36. Han, S.I., Lee, J.: Approximation-free tracking error constraint control for lagrangian systems. IEEE Trans. Ind. Electron. 64(2), 1269–1278 (2017)

    Article  Google Scholar 

  37. Luo, J., Yin, Z., Wei, C., Yuan, J.: Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking. Aerosp. Sci. Technol. 74, 173–183 (2018)

    Article  Google Scholar 

  38. Hu, Y., Geng, Y., Wu, B., Wang, D.: Model-free prescribed performance control for spacecraft attitude tracking. IEEE Trans. Control Syst. Technol. 29(1), 165–179 (2021)

    Article  Google Scholar 

  39. Chen, Q., Ye, Y., Hu, Z., Na, J., Wang, S.: Finite-time approximation-free attitude control of quadrotors: theory and experiments. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1780–1792 (2021)

    Article  Google Scholar 

  40. Wong, H., de Queiroz, M.S., Kapila, V.: Adaptive tracking control using synthesized velocity from attitude measurements. Automatica 37(6), 947–953 (2001)

    Article  MathSciNet  Google Scholar 

  41. Chen, Q., Xie, S., He, X.: Neural-network-based adaptive singularity-free fixed-time attitude tracking control for spacecrafts. IEEE Trans. Cybern. 51(10), 5032–5045 (2021)

    Article  Google Scholar 

  42. Crassidis, J.L., Markley, F.L.: Sliding mode control using modified rodrigues parameters. J. Guid. Control. Dyn. 9(6), 1381–1383 (1996)

    Article  Google Scholar 

  43. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)

    MathSciNet  Google Scholar 

  44. Sontag, E.D.: Mathematical Control Theory. Springer, London (1998)

    Book  Google Scholar 

  45. Levant and Arie: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  46. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Industr. Electron. 65(10), 8112–8123 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank the support from the National Natural Science Foundation (NNSF) of China under Grant Nos. 61973274 and 61873239, the Zhejiang Provincial Natural Science Foundation under Grant No. LZ22F030007, the Key Laboratory Open Project Fund under Grant No. GDSC202010 and the Anhui Provincial Natural Science Foundation under Grant No.2008085QF331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Chen, Q., He, X. et al. Finite-time command-filtered approximation-free attitude tracking control of rigid spacecraft. Nonlinear Dyn 107, 2391–2405 (2022). https://doi.org/10.1007/s11071-021-07091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07091-x

Keywords

Navigation